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Abstract

Despite the technological advances in languages and tools to support program development, pro-

grammers still deliver software with lots of errors. Software testing has been the dominant approach

in industry to improve the quality of software at code level. Testing software is not cheap though. A

study done in 2002 by the National Institute of Standards and Technology (NIST) [NIS02] reports

that between 70% and 80% of development costs is due to testing. We believe that automation

of software testing can help to reduce this cost; automation can assist the programmer to test the

code he develops in a more systematic way.

Software model checkers are becoming increasingly popular to assist in the automation of soft-

ware testing. Model checkers are tools that systematically explore the state space of a model (say,

a software model) to demonstrate the presence of errors or to confirm their absence. For example, a

model checker can report a test whenever it finds an “interesting” state, i.e., a state which violates

a user-defined assertion or a state that makes execution throw a runtime exception.

This dissertation focuses on model checkers that operate directly on code. Model checking

programs is becoming very popular. It enables the discovery of errors in the implementation as

opposed to errors in a system design.

However, model checking programs poses particular challenges. It is the implementation that

defines the model, not the design. As a consequence, a deterministic step of the exploration can be

potentially more expensive as it may require the execution of a complex fragment of sequential code.

In addition, the states that the model defines are potentially larger, making important operations

that depend on the size of the state potentially slower.

While state-space explosion has been traditionally the key issue in model checking, time effi-

ciency becomes more relevant with the increasing appearance of model checkers that operate on

programs. Our goal is to improve time efficiency for model checking programs that allocate dynamic
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data. Such programs are pervasive nowadays with the wide use of object-oriented languages.

To that end, this dissertation presents Mixed execution and ∆Execution. Mixed execution

speeds up the execution of deterministic steps in model checkers that use a special representation

of state. Such representation can be convenient to perform some model checking operations but

sacrifices the execution of deterministic steps (i.e., fragments of sequential code). ∆Execution uses

sets to perform state-space exploration. The use of sets enables the model checker to take advantage

of overlapings (of state and paths) that exist in a systematic exploration of state, speeding up several

operations in software model checking.

We implemented mixed execution in JPF. We evaluate mixed execution on seven subject pro-

grams and one large case study. The experimental results on the seven smaller programs show

that mixed execution can improve the overall time for state exploration in JPF from 1.01x to 1.73x

(with median 1.13x). We also evaluate mixed execution on a larger case study containing bugs.

The exploration time on this experiment reduces from 1.14x to 1.41x (with median 1.23x).

We implemented Delta Execution in two model checkers, JPF (Java PathFinder) and BOX

(Bounded Object eXploration) to evaluate the effectiveness of this technique in model checkers with

different designs. The results show that ∆Execution improves the overall exploration in both tools,

but the improvements are due to different factors. We evaluate ∆Execution on ten simple subject

programs and a larger case study with errors. The results show that ∆Execution improves the

exploration time for the smaller programs from 0.88x to 126.80x (with median 5.60x) in JPF and

from 0.58x to 4.16x (with median 2.23x) in BOX, while taking from 0.46x to 11.50x (with median

1.48x) less memory in JPF and from 0.18x to 2.71x (with median 1.18x) memory in BOX. We

also evaluate ∆Execution, using our JPF implementation, on one larger case study with errors,

the AODV routing protocol, where ∆Execution improves the exploration time from 0.88x to 2.04x

(with median 1.72x).
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Chapter 1

Introduction

A study done in 2005 by Scaffidi et al. [SSM05] estimates that 90 million of Americans will use

computers by 2012. Of these, 13 million will be software programmers. Currently, the number of

programmers is between 2 and 2.5 million according to the U.S. Census Bureau [oLS05]. This study

not only illustrates the importance of software in the current activities of the American population

but also the increasing demand on software development. Society uses software more pervasively

nowadays. We can already find software, for example, in cell phones, fridges, cars, or medical

equipment, in addition to the personal computer with which people are more familiar.

Despite the technological advances in languages and tools to support program development,

programmers still deliver software with lots of errors. A study done in 2002 by the National

Institute of Standards and Technology (NIST) [NIS02] estimates that (1) the annual cost of software

errors is around 59.5 billion dollars, (2) testing and debugging consume around 70% and 80% of

development time, and (3) fixing an error takes on average 3.9h.

The first estimate presents the cost of software errors exposed in various development phases,

including later phases when fixing an error becomes more expensive [Boe91]. The second and

third estimates point out that testing and debugging take a significant fraction of the development

efforts. This study helps in understanding the impact of software errors on the American economy

and suggests the need for better techniques to assure software quality. It indicates, in particular,

the need for an improved infrastructure for testing.

Testing is the dominant approach in industry for assuring software quality at code level. The

principle of testing is simple: a test consists of a sequence of experiments against the subject of

test and a check, called test oracle, that verifies whether the test passes or fails [Bei90]. A test

for an object-oriented program consists of a sequence of method calls and a procedure that checks

whether the execution of the sequence is in accordance to its expected behavior. A test driver is a
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component that creates environments necessary to test the subject. The driver constructs sequences

of method invocations that exercise the subject under different scenarios, effectively exploring its

different states.

As the estimates above show, testing and debugging can be very expensive activities in soft-

ware development. We believe that automation of software testing can help to reduce this cost;

automation can assist the programmer to test the code he develops in a more systematic way. One

way to automate testing is to use model checkers: tools that can explore, in a more systematic

fashion, different states of a program.

A model checker takes as input a model of a system and a property about this system and

produces as output a description of the behaviors of the system that violate the property. A model

includes a set of states and a transition relation that tells how the system transits from one state

to another. Model checking is the process of exploring the state space of a model to find property

violations or to demonstrate that none exist. Model checkers are tools that automate this process.

We use the term state space to refer to the set of all possible states that the dynamic execution of

a test subject can produce. A model checker can, for instance, systematically produce tests with

the assistance of a test driver. The tool can report a test whenever it finds an “interesting” state.

For example, when the execution of a test reaches a state which violates a user-defined assertion

or a state that makes execution throw a runtime exception.

Traditionally, model checkers operate on design models, i.e, the input model describes a system

design. Examples of such model checkers include FDR [Ros94], SPIN [Hol97], NuSMV [CCGR99],

and Alloy Analyser [JSS00]. Finding design flaws is very important: the later a programmer

addresses a design error the more costly it is to fix the error.

Recently, however, several model checkers have been implemented to operate on implementation

models, i.e., the input model describes a system implementation. Examples include JPF [LV01,

VHB+03], CMC [MPC+02], BogorVM [RDH03], and SpecExplorer [VCST05]. Finding errors in

the implementation is also very important; it allows the programmer to find and fix errors directly

in the system’s code.

Two important and orthogonal decisions in the design of a model checker are how it represents

state and what kind of model it expresses. Chapter 2 discusses these alternatives in more detail.
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This dissertation focuses on model checkers that represents state explicitly and take implementation

models as input. The goal is to improve the efficiency of explicit-state model checking for programs

that allocate dynamic data. Improving time efficiency in model checking makes it more practical

for the user.

In the following, we discuss the challenges involved in software model checking. We then state

the thesis of this dissertation and briefly describe two techniques to improve efficiency in model

checking: mixed execution and ∆Execution. Finally, we list the contributions of this work and give

an outline for the rest of this dissertation.

1.1 Challenges for software model checking

We start this section by introducing the key operations in program model checking. The challenge

is to implement these operations efficiently.

The key operations in explicit-state model checking of programs are: (i) execution of transi-

tions, (ii) path exploration (backtracking), and (iii) path pruning (state comparison). Execution

of transitions refers to the operation that performs a deterministic step in the subject program,

path exploration refers to the operation that performs exploration of all program paths created

with non-deterministic choices, and path pruning refers to the operation that performs pruning

of some of these paths based on some notion of equivalence, e.g., isomorphism of states that the

model checker visits during the exploration. We later refer to path exploration just as backtracking

(backtracking is part of path exploration) and to path pruning just as state comparison. It is

important to point out that we focus on model checkers that perform backtracking by storing and

restoring state and perform path pruning by comparing states during the state space exploration.

(For a more detailed description of these operations, refer to Section 2.5.)

Model checking programs poses particular challenges. It is the implementation that defines the

model, not the design. As a consequence, a deterministic step of the exploration can be potentially

more expensive as it may require the execution of a complex fragment of sequential code. In

addition, the states that the model defines are potentially larger, making backtracking and state

comparison, which are two key model checking operations – whose performance depend on the size

of the state – potentially slower.
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1.2 Thesis statement

This dissertation proposes two techniques to improve time efficiency in explicit-state model checking

of programs that dynamically allocate data. We call these techniques mixed execution and delta

execution. Our thesis is that:

Mixed Execution and Delta Execution can be effective for reducing overall exploration

time in the explicit-state space exploration of programs that manipulate dynamically

allocated data.

1.3 Mixed Execution

Explicit-state model checkers of programs are typically designed to speed up operations for back-

tracking and state comparison. They often use a representation of state that contribute to making

these key operations efficient. We call such representation special state representation. Making

these operations efficient results in a more efficient exploration of all program paths. However, the

use of special state representation makes each individual execution inefficient: the model checker

needs to track every write in order to update the special state representation. This dissertation

presents a technique to speed up the execution of transitions in model checkers that use special

representation of state. The technique proposes the use of a different representation in certain

parts of the execution.

We use the term native state representation to refer to a representation of state that favors exe-

cution, typically native to some environment. In the case of Java, for instance, native representation

refers to the representation of state that the JVM uses.

The main idea of mixed execution is to execute some parts of the program natively, instead

of on top of an environment that operates on special state representation. The technique can

reduce overall exploration time by reducing time to execute transitions. With mixed execution,

the model checker still compares, stores and restores the states as in its regular operation. The

model checker executes natively only deterministic blocks, i.e., parts of the execution that have

no thread interleavings or non-deterministic choices. It works by translating the state between

different representations on the execution boundaries of these blocks.
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public class BST {

private Node root;

private int size;

1: public void add(int info) {

2: if (root == null)

3: root = new Node(info);

4: else

5: for (Node temp = root; true; )

6: if (temp.info < info) {

7: if (temp.right == null) {

8: temp.right = new Node(info);

9: break;

10: } else temp = temp.right;

11: } else if (temp.info > info) {

12: if (temp.left == null) {

13: temp.left = new Node(info);

14: break;

15: } else temp = temp.left;

16: } else return; // no duplicates

17: size++;

18: }

public boolean remove(int info) { ... }

}

class Node {

Node left, right;

int info; Node(int info) { this.info = info; }

}

Figure 1.1: Binary Search Tree.

1.3.1 Mixed execution in JPF

We implemented mixed execution in Java PathFinder (JPF), a popular, general-purpose model-

checker for Java programs. JPF implements its own JVM (that runs on top of a regular JVM) and

uses special representation of state. Mixed execution translates the state from JPF to the state of

an underlying JVM at the beginning of a deterministic block and performs the inverse translation

at the end of that block. These two translations introduce an overhead, but the speedup obtained

by executing on the host JVM can easily outweigh the slowdown due to the translations. JPF has

slower execution not only because it uses special-state representation but also because it implements

an interpreter on top of a regular virtual machine.

Figure 1.1 shows a binary search tree class that implements a set. Each BST object stores the
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Figure 1.2: Running the method add(1) in JPF using mixed execution.

size of the tree and its root node, and each Node object stores an integer value and references to

the two children. The BST class has methods to add and remove tree elements. A test sequence for

the binary search tree class consists of a sequence of method calls, for example BST t = new BST();

t.add(3); t.add(2).

Figure 1.2 illustrates how mixed execution works in JPF when the model checker attempts to

invoke the method add(1) against a binary search tree that the method sequence add(3); add(2)

builds. Note from the figure that JPF represents heaps as array of integer arrays. Three integer

arrays along with their references represent the pre-state of the tree. The references to these arrays,

expressed with the integers 96, 97 and 98, are indexes on the array denoting the entire heap. The

value -1 refers to the null reference. Field types distinguish between primitives and non-primitives.

Mixed execution intercepts the call add(1), translates the state to a native form shown in the

upper-right corner and invokes the method natively. The resulting state, appearing in the bottom-

right corner, is then translated back to the JPF state.

Although we evaluate mixed execution in the context of JPF, the main idea – executing parts
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of model checking on different state representations – generalizes to other model checkers that

use some special state representation, including AsmLT [Fou], BogorVM [RDH03], and SpecEx-

plorer [VCST05].

1.4 Delta Execution

We next introduce ∆Execution, a technique that speeds up explicit-state model checking of software

by applying symbolic model checking (SMC) on heaps. (See details on SMC in Section 2.3.)

SMC makes it possible to deal efficiently with sets of states to perform state space explo-

ration but does not support efficiently operations on state with heaps. EMC makes it practical

to manipulate concrete states including heaps but does not scale well in the presence of a large

number of complex states. Delta Execution (∆Execution) circumvents the inability that symbolic

model checkers have to efficiently manipulate heaps symbolically. In essence, it provides a way for

explicit-state model checkers to explore the state more efficiently with the use of sets.

The proposed technique leverages the fact that many paths a model checker traverses during

a systematic exploration of the state space partially overlap. Conceptually, the technique enables

sharing of the prefixes of computation among individual executions that have the same flow of

control. Figure 1.1 shows a fragment of a class implementing a binary search tree that we use to

illustrate the technique. Figure 1.3 shows individual instances of tree objects into boxes denoting

set of states. The top of the figure shows a set including all the states that one can build with

a binary search tree of size 3, containing values from 1 to 3. The bottom of the figure shows the

state space reachable when adding the value 4 to each of these trees.

The key points to illustrate in this figure are as follows.

• Execution of the method call add(4) operates on sets of binary trees. ∆Execution defines a

special form of execution that operates on sets of concrete states. It changes the dynamic

semantics of the programming language to operate on sets of states. For example, we redefine

the operator that compares the equality of two object references to compare the equality of

two sets of object references.

• Execution may split the set of states on branching points. It is often the case that the
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Figure 1.3: Executions of add(4) on a ∆State.

technique requires to “split” the set in order to enforce the invariant that all the individual

states in the set follow the same execution path. This happens in branching points whenever
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it is not possible for all the states in the set to evaluate the branching condition to the same

value. The top-two dark bullets correspond to splits (branching points) during the execution

of the body of the method add. Effectively, split points originate non-deterministic choices in

the exploration. We informally say that a “path splits” to denote that the set splits and a

non-deterministic choice has been created to explore each path in isolation.

• Multiple sets of states merge to construct a post state. Merging allows to construct new

sets from existing ones. Determining when to merge states is an important decision for the

implementation of the technique. We chose to merge on the boundaries of method invocations

as the figure suggests.

The key aspects regarding the performance of ∆Execution are as follows.

• ∆Execution may reduce time to execute transitions. This happens because it is sometime

possible to use constants valid across all states in the set. For example, an operation that

reads the field size in either the pre or post state takes constant time, instead of time linear

in the number of states.

• ∆Execution can reduce time to compare states. Instead of comparing states one-by-one, the

use of sets for state-space exploration allows the model checker to compare sets of states. The

overlapping that exist between the states in the set enables a more efficient comparison.

• ∆Execution can reduce the overall time for backtracking. The reduction in the number of

executions enables less backtracking. Figure 1.3 illustrates that ∆Execution traverses only 3

of the 5 paths that lead each individual pre to a post-state. The paths only split when it is

not possible for all the states in the current set to evaluate the branching condition to the

same value.

1.5 Summary of evaluation

This section presents a scenario of exploration that we use to evaluate the techniques and some of

our experimental results.
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// N bounds sequence length and parameter values

public static void main(int N) {

BST bst = new BST(); // empty tree

for (int i = 0; i < N; i++) {

int methNum = Verify.getInt(0, 1);

int value = Verify.getInt(1, N);

switch (methNum) {

case 0: bst.add(value); break;

case 1: bst.remove(value); break;

}

stopIfVisited(bst);

}

}

Figure 1.4: Driver used to explore exhaustively BST objects within given bounds.

1.5.1 Example of bounded-exhaustive exploration

We now present an example that illustrates how to use an explicit-state model checker to perform

bounded-exhaustive exploration, a common scenario of use of model checkers that we apply in the

evaluation of our techniques.

In this scenario, the model checker exhaustively explores all sequences of method calls in the

subject under test up to some bound [XMSN05,VPP06,DB06]. Such exploration does not actually

enumerate all sequences but instead uses state comparison to prune sequences that produce the

same states.

Figure 1.4 shows an example driver program that enables a model checker to systematically

explore different states of the tree using bounded-exhaustive exploration. The driver creates the

initial state of the binary search tree and exhaustively explores sequences (up to length N) of the

methods add and remove (with values between 1 and N). The driver non-deterministically selects

different methods and input values using the library method getInt(int lo, int hi), as shown in

Section 2.1.

This driver discards from further exploration any sequence that results in a state that has al-

ready been visited: it uses the library method stopIfVisited(Object root) that ignores the current

execution path and forces backtracking (to a preceding choice point) if the state reachable from

root has already been visited in the exploration. Note that the comparison of states is performed

only at the method boundaries (not during method execution), which naturally partitions an exe-
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cution path into subpaths that each cover execution of one method invocation. As in other related

studies [XMSN05,VPP06,dPX+06], this driver explores states in breadth-first order. A depth-first

exploration could miss parts of the state space since state comparison could eliminate a state with

a shorter sequence in favor of a state with a longer sequence.

Figure 1.5 shows a graph that represents the state space the model checker produces when

exploring the states of BST with this driver and N = 3. Nodes denote BST states, and edges

method invocations on BST objects. To simplify the illustration, we omit from the graph edges that

correspond to invocations of delete as each “delete” edge is either a self-loop or leads to some

existing state.

Each path in this graph denotes a method sequence consisting of invocations of add against

the BST object that the model checker creates using the driver. For instance, it first constructs an

empty tree and then invokes non-deterministically the method add with values 1, 2, and 3. The

states produced with these calls appear in the graph at depth 1. The presence of states with more

than one incoming edge indicates that some method sequences lead to a previously visited state,

i.e., the state comparison the operation stopIfVisited performs is in effect.

In mixed execution, we select some of the methods reachable from those the driver invokes to

execute in native mode. Also, the driver in ∆Execution merges sets of states after the completion

of every iteration. Recall that we use breadth-first exploration as search strategy.

1.5.2 Summary of experimental results

We first evaluate mixed execution on seven subject programs. The experimental results show that

mixed execution can improve the overall time for state exploration in JPF from 1.01x to 1.73x

(with median 1.13x), while improving the time for execution of deterministic blocks from 0.91x

to 3.05x (with median 1.64x). We optimized the baseline translation of state by translating only

the parts of the states which are actually reachable from the execution. We refer to the baseline

translation as eager, and refer to its optimized version as lazy. Our experiments show that lazy

translation can improve the eager mixed execution from 1.03x to 1.35x (with median 1.08x).

We also evaluate mixed execution on a larger case study containing bugs. The exploration

time on this experiment reduces from 1.14x to 1.41x (with median 1.23x). It is important to point
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Figure 1.5: Bounded state space of binary search tree. We omit edges that correspond to invocations
of delete: each “delete” edge is either a self-loop or lead to some existing state.

out that mixed execution reduces the overall exploration time by reducing the execution time for

deterministic blocks. Mixed execution does not affect the order of exploration, the number of

explored states, or any other aspect of the state exploration. We implemented mixed execution in

the JPF model checker.

We implemented Delta Execution in two model checkers: JPF and BOX (Bounded Object

eXploration). JPF is a popular general-purpose model checker for Java programs, while BOX is a

specialized model checker that we developed for efficient exploration of sequential Java programs.
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Execution Path exploration Path pruning
Mixed execution ✓ - -

∆Execution ✓ ✓ ✓

Table 1.1: Addressing time efficiency in explicit-state model checkers.

The goal is to evaluate the effectiveness of the technique in model checkers designed with different

principles. The results show that ∆Execution improves the overall exploration in both tools, but

the improvements are due to different factors. The improvement in JPF is mainly due to execution

and backtracking, while in BOX it is mainly due to the optimized comparison of state.

We first evaluate ∆Execution on ten simple subject programs. The results show that ∆Execution

improves the exploration time from 0.88x to 126.80x (with median 5.60x) in JPF and from 0.58x

to 4.16x (with median 2.23x) in BOX, while taking from 0.46x to 11.50x (with median 1.48x) less

memory in JPF and from 0.18x to 2.71x (with median 1.18x) memory in BOX. We also evaluate

∆Execution for one case study of large size including errors, where the exploration time improved

from 0.88x to 2.04x (with median 1.72x).

Visser et al. [VPP06] recently proposed and implemented in JPF several non-exhaustive explo-

rations. Their results on four subject programs showed that abstract matching achieved the best

structural code coverage. ∆Execution improves exploration time for abstract matching from 0.92x

to 6.28x (with median 4.52x) in JPF. The relative decrease of improvement in ∆Execution – from

5.60x in exhaustive to 4.52x (median values) in non-exhaustive – is due to the sharp reduction in

the number of states and executions when using abstract matching.

1.6 Contributions

Our contributions are as follows.

• Ideas of mixed execution and ∆Execution. We proposed two techniques to improve time effi-

ciency of the key operations of explicit-state model checking. Table 1.1 relates each technique

with the operation it improves. Mixed and ∆Execution can improve time for the execution

of transitions, while ∆Execution can, in addition, improve time for the path exploration

(backtracking) and path pruning (state comparison).
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• Proposal of a data structure that represents efficiently sets of single-rooted heaps. The

proposed data structure contains operations that allow efficient merging and splitting of

sets of concrete heaps (see Section 1.4).

• Implementation of mixed execution in JPF, and implementation of ∆Execution in both JPF

and BOX. We modified the JPF model checker to implement the two techniques and imple-

mented BOX, a custom built model checker specialized in sequential code.

• Evaluation on several subjects and a larger case study. We evaluated the techniques using

data structures from a variety of sources [SM03, CS04, Qad, PE05, XMSN05, DB06, VPP06]

and one larger case study, the AODV routing protocol [PR99].
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Chapter 2

Background

This chapter presents concepts and terminology to support the discussion of the remaining chapters.

We first illustrate basic concepts in model checking with a simple example. We then discuss

two important orthogonal aspects in the design of a model checker: (i) how the model checker

represents state and (ii) what kind of input language it uses. These aspects will be important in

the presentation of our techniques. Then, we highlight the key operations involved in a class of

model checkers that operate on actual code, and discuss the design and implementation of these

operations in a specific model checker, Java PathFinder (JPF) [LV01,VHB+03]. Finally, we discuss

the AODV case study that we use to evaluate the techniques in this dissertation.

2.1 Model representation

A model is a description of a system that can serve to predict or explain its behavior [CGP99]. A

model describes a set of states and a transition relation which tells how the system transits from

one state to another. Once one builds a model, it is possible to argue whether or not a property,

characterizing some expected or unexpected behavior of the system, holds for that model. Model

checking is the process of exploring the state space of a model to find property violations or to

demonstrate that none exist. Model checkers are tools that automate this process.

Non-determinism is central to the construction of models. It provides a framework for defining

the semantics of language constructs that does not depend solely on the input state [Gun92,Win93].

Non-determinism can originate from the thread interleavings of a concurrent program run. The

interleavings depend on an external (and uncontrolled) environment; it is thus not possible to

determine the interleaving prior to an execution. Such environment includes, for example, the

CPU load. Non-deterministism is an abstraction that one uses to model the possible interleavings
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of a concurrent program. Non-determinism can also originate from the programmer as a means

to model the choice of inputs the program can take. In summary, non-determinism enables the

expression of different choices of control and input data that the program can exercise. This

dissertation focuses on sequential programs and uses non-determinism only to express the choice

of inputs.

We use the following non-deterministic program to build a model for showing different aspects

of software model checking. This program tests a one-bit adder, provided by the operation +.

1: x = Verify.getInt(0, 1);

2: y = Verify.getInt(0, 1);

3: (result, overflow) = x + y;

4:

Variables x, y, result, and overflow are 1-bit integers that range over the domain D1 = 0..1 and

are initialized to 0, while the implicit program variable pc ranges over D2 = 1..4 and is initialized to

1. Variables x and y model the input to the adder, variables result and overflow model the outcome

of the addition, and variable pc models the program counter (simply the line number here). The

operation Verify.getInt(int lo, int hi) introduces a non-deterministic choice point to return a

value between lo and hi as input to x and y. In other words, instead of always producing a single

execution like deterministic programs, this non-deterministic program can produce 4 executions

corresponding to the 4 different combinations of values assigned to x and y.

We need to take into account the fact that the domains of variables in this program are finite.

For example, the addition of 1 and 1 results in a value outside the domain D1. To deal with

overflows of this kind, we make arithmetic operations to return pairs. The first element denotes

the result of the operation when no overflow arises in the calculation, the second element is a flag

indicating whether or not the arithmetic operation resulted in overflow.

The triple 〈S, S0, R〉 defines a model. The set S denotes the states in the model, S0 ⊆ S denotes

the initial set of states, and R ⊆ S × S denotes the transition relation. The state of the model

includes the values for the input variables x and y, the output variables result and overflow, and

the program counter pc. The state consists of assignments to these variables. We use a sequence

of single-digit integers to represent a state, e.g., 10002 refers to a state having x equals to 1, having
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y, result, and overflow equal to 0, and pc equals to 2. Note that this state is in fact reachable

from the initial state 00001. One possible model for this program follows.

S ≡ D4
1 × D2

S0 ≡ x = 0 ∧ y = 0 ∧ result = 0 ∧ overflow = 0 ∧ pc = 1

R ≡ (pc = 1 ⇒ (x′ = 0 ∨ x′ = 1) ∧ y′ = 0 ∧ result’ = 0 ∧ overflow’ = 0 ∧ pc’ = 2) ∧

(pc = 2 ⇒ (y′ = 0 ∨ y′ = 1) ∧ x′ = x ∧ result’ = 0 ∧ overflow’ = 0 ∧ pc’ = 3) ∧

(pc = 3 ⇒ x′ = x ∧ y′ = y ∧ result’ = x ⊕ y ∧ overflow’ = (x ∧ y) ∧ pc’ = 4)

The cartesian product of the domains of all program variables forms the set S from the model.

The initial set of states is the singleton set, corresponding to the initial assignment of each program

variable. Typically, the model encodes the transition relation implicitly, i.e., in some form from

which it is possible to determine the potential successor(s) for each given state or to build state pairs,

which correspond to pre- and post-states of each program transition. The model above encodes the

transition relation as a successor function. This function takes as inputs an assignment of program

variables, including the program counter and produces another assignment that corresponds to

the post-state. Note that we use a boolean function for this encoding and that we express non-

determinism with disjunction. The symbol ⇒ denotes logical implication and the symbol ⊕ refers

to the exclusive-or boolean operator. The program addition results in overflow when both x and y

store the value 1.

Now, it is possible to express properties about the model. For instance, the user of a model

checker may want to check that execution cannot reach the overflow state from the initial state.

Note that this property does not hold for this model since there is a path in the model from the

initial state to a state s ∈ { abc1d | a, b, c ∈ D1 ∧ d ∈ D2 }.

2.2 Explicit-State Model Checking (EMC)

Explicit-state model checkers represent states and the transitions between them explicitly, i.e., they

enumerate every possible state pair of the transition relation. Below, we show one explicit encoding

of the transition relation R.

{(00001, 00002), (00001, 10002),
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(00002, 00003), (00002, 01003), (10002, 10003), (10002, 11003)

⋆ (00003, 00004), (01003, 01104), (10003, 10104), (11003, 11014)}

The line with the label ⋆ illustrates state transitions that relate to line 3 of the program.

Figure 2.1 shows a graph that explicitly represents the previous model. Nodes in this graph denote

states while edges denote the transitions between them. We label the edges with the statement the

program executes to carry out a state transition. Note that we omit from the label the implicit

assignment to the variable pc. Explicit-state model checking works by exploring the nodes of this

graph in some specific order to find property violations. (The graph is typically not available prior

to the exploration, but constructed on-the-fly as the model checker finds new states.)

(result, overflow) =

 x + y

(result, overflow) =

 x + y

(result, overflow) =

 x + y

11014

11003

y = 0

10104

10003

y = 1

10002
y = 0

00003

00004 01104

01003

(result, overflow) =
 x + y

00002
y = 1

00001
x = 1x = 0

Figure 2.1: Explicit state representation of the model.

It is important to highlight that a model checker can assist with the construction of tests. The

sequence of experiments a test includes corresponds to the decisions made in the state space explo-

ration. The oracle of the test corresponds to the properties that the model checker verifies. In this

case, the property that the variable overflow should have value 0 in any reachable state. For in-

stance, the test x = 1; y = 1; (result, overflow) = x + y; assert overflow == 0; corresponds

to one path in the graph of Figure 2.1 and reconstructs the state 11014 that exposes an overflow. In

principle, the model checker can check the property after the execution of every transition. Here,

for simplicity, the test includes only the check for the last transition. (The test implements the
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check with a state assertion.) A state invalidates the assertion above if the predicate overflow ==

1 holds in that state. An assertion violation indicates that the test has failed.

2.3 Symbolic Model Checking (SMC)

Symbolic model checking [JEK+90, CGP99, McM92] presents an approach to deal with the huge

state-spaces that model checking can produce. SMC enabled a breakthrough in software verification

as it provided a significantly more efficient exploration than explicit-state model checking. More

precisely, SMC represents state symbolically, encoding sets of concrete states. The target of SMC

was originally hardware verification. Even nowadays, it is mostly used for hardware or abstractions

of software, as it requires specific state representations.

Symbolic model checking represents set of states and the transition relation as boolean functions.

Such encoding enables the construction of special functions that map set of states to another.

Symbolic model checking proceeds by finding fixpoints of such functions, where fixpoint is an input

of a function for which the function produces the same value as result, i.e., x is a fixpoint of f if

x = f(x). Intuitively, we say that such special functions “accumulate information”: an application

of the function approximates the result to the solution, i.e., to a fixpoint. Section 2.3.1 shows the

conditions for the existence of fixpoints and also illustrates symbolic model checking on our 1-bit

adder example.

Conceptually, one can define a function that calculates a superset of the initial set of states, with

the property that all elements in the initial and final sets must satisfy some property. The transition

relation indicates which additional states to include in the final set (e.g., parent, children).

Typical implementations of SMC encode boolean functions with Ordered Binary Decision Dia-

grams (BDDs for short) [Bry92]. BDDs provide a canonical and compact representation for boolean

functions, and enable efficient operations over them. These operations are central to making sym-

bolic model checking viable.

2.3.1 SMC in more detail

This section illustrates how symbolic model checking works on the 1-bit adder example program.

It shows how to encode sets and relations as boolean functions, how to express properties in terms
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of such functions, and how to calculate their fixpoints.

Symbolic Model Checking (SMC) represents states and transitions as boolean functions. For

example, the boolean function Ŝ0(~x) ≡ ¬x1 ∧¬x2 ∧¬x3 ∧¬x4 ∧¬x5 ∧¬x6 represents the initial set

of states for the model appearing in Section 2.1. This function uses boolean variables to encode

program variables: x1 encodes x, x2 encodes y, x3 encodes result, x4 encodes overflow, and x5

and x6 together encode pc. The symbol ~x is a shorthand for the sequence of boolean variables

x1, ..., x6, and the symbol ˆ indicates that a definition uses a boolean encoding.

Note that with the exception of pc, the program variables only take values 0 and 1 in the

original program. An assignment of false to x1, for example, corresponds to an assignment of 0

to the program variable x (similarly, true corresponds to 1). Boolean vectors can encode variables

from other domains too: one can use the bijection {0, 1}m → D to encode the elements of a domain

D with 2m elements (with m > 0). As a matter of fact, the pc variable can store any value from

1 to 4 in the example program. It requires two boolean variables to encode the four possible

assignments; we use the bijection {00 7→ 1, 01 7→ 2, 10 7→ 3, 11 7→ 4} as the encoding for pc.

A boolean formula over these variables thus encodes a set of concrete states. In this example

the function Ŝ0 denotes a set including a single concrete state, i.e., a singleton set.

The boolean function R̂(~x, ~x′) ≡ t1(~x, ~x′) ∧ t2(~x, ~x′) ∧ t3(~x, ~x′) encodes the transition relation

R. The definition of R̂ uses two sequences of variables, one relative to the the current state, ~x, and

the other relative to the next state, ~x′. Below we show the definitions of the functions t1, t2, and

t3, which conceptually encode each individual transition of the illustrative program.

t1(~x, ~x′) ≡ (¬x5 ∧ ¬x6) ∧ (¬x′5 ∧ x′6) ∧ n(2) ∧ n(3) ∧ n(4)

t2(~x, ~x′) ≡ (¬x5 ∧ x6) ∧ (x′5 ∧ ¬x′6) ∧ n(1) ∧ n(3) ∧ n(4)

t3(~x, ~x′) ≡ (x′5 ∧ ¬x′6) ∧ (x′5 ∧ x′6) ∧ (x′3 = x1 ⊕ x2) ∧ (x′4 = x1 ∧ x2) ∧ n(1) ∧ n(2)

We use the boolean function n(i) ≡ x′i = xi to express that the variable xi did not change value

in the transition. Note that transition t1 does not use variable x′1, and transition t2 does not use

variable x′2. This indicates that the function does not depend on that variable: x′1 can be either

true or false after taking t1. Also note that the transition t3 identifies an overflow state when both

x1 and x2 are true.

The encoding R̂ enables the creation of functions on set of states, τ : P(S) → P(S), that
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conceptually express how a set of states evolve when making program transitions. Symbolic model

checking proceeds by finding fixpoints of such functions. A fixpoint of τ is an input for which τ

returns the same value, i.e., some set of states p for which τ(p) = p. Assuming an application of τ

results in a superset of the input, one can, intuitively, calculate a fixpoint with iterative applications

of τ starting from a a minimum element from its domain P(S). We call such fixpoint the least

fixpoint since it is the fixpoint which is less or equal to any other fixpoint in the domain; in this

case, the smallest set in P(S) satisfying the constraints τ expresses. The sequence:

false ⊆ τ(false) ⊆ ... ⊆ τ i(false) = τ i+1(false),

illustrates the iterative calculation of the fixpoint τ i(false), where the exponent in τ means number

of iterations. In addition to assuming that τ calculates a superset of its input, note that we also

assume that there is finite number of elements in P(S). These conditions are sufficient to guarantee

that the iterative procedure generates a fixpoint [Tar55].

Now that we understand better how to compute fixpoint of functions, such as τ , let us show

with a concrete example how to apply the concept to model checking. First, we need to construct

a recursive function on set of states that characterizes how information flows. For example, we

use the function τ below [McM93] to accumulate the set of reachable states in the state space

exploration. Assume that the context of call to τ binds the variables in ~x.

τ0 ≡ λZ.λ~x′. (Ŝ0 ∨ (∃ ~x. Z ∧ R̂(~x, ~x′)))

τ ≡ λZ. (τ0 Z ~x)

This function satisfies the conditions described above, i.e., it produces a superset of the input

states and it also operates on a finite domain. Therefore, one can iteratively apply this function to

find the set of all reachable states from the model. More precisely, the set of all reachable states

from the initial set of states Ŝ0. Note that the variables in ~x which are free in R̂ bind tighter in the

scope of the existential quantifier, i.e., the lambda application does not substitute such variables.

We show next the two initial iterations of the fixpoint computation. We make use of the notation

f|xi←v to denote the substitution of xi with v in f , and the property that ∃x.f ≡ f|xi←0 ∨ f|xi←1.

τ(false) = Ŝ0 ∨ (∃ ~x. false ∧ R̂(~x, ~x′)) = Ŝ0

τ2(false) = τ(τ(false)) = τ(Ŝ0)

= λ~x′. (Ŝ0 ∨ (∃ ~x. Ŝ0 ∧ R̂(~x, ~x′)))(~x)
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= Ŝ0 ∨ λ~x′.(∃ ~x. Ŝ0 ∧ R̂(~x, ~x′))(~x)

= Ŝ0 ∨ λ~x′.(∃ x1..x5.((Ŝ0 ∧ R̂(~x, ~x′))|x6←0 ∧ (Ŝ0 ∧ R̂(~x, ~x′))|x6←1))(~x)

= ...

= Ŝ0 ∨ λ~x′.(¬x′2 ∧ ¬x′3 ∧ ¬x′4 ∧ ¬x′5 ∧ x′6)(~x)

= Ŝ0 ∨ (¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ x6)

Note that the set of states τ2(false) given by the final equality includes the initial state and the

two states reachable after the first program transition.

Binary Decision Diagrams

This section discusses the use of Binary Decision Diagrams (BDDs) to encode boolean functions.

A binary decision diagram is as a direct acyclic graph (DAG) with a single root node. It contains

two terminal nodes: 0-terminal and 1-terminal. A boolean variable labels each non-terminal node,

and each node has exactly two child nodes called low and high child; 0 labels the low edge and

1 labels the high edge. The low (respectively, high) edge denotes an assignment of the value 0

(respectively, 1) to the variable that labels the source node. Any path from the root node to the

1-terminal (respectively, 0-terminal) node corresponds to an assignment of variables for which the

boolean formula evaluates to true (respectively, false). Variables that do not occur in such a path

are not relevant in the result; they can take any value.

We say that a BDD is ordered if variables appear in the same order across any path from the

root node [Ake78,Bry92,CGP99]. We say that a BDD is reduced if it merges any isomorphic graph

(i.e., redirects any incoming edge of one isomorphic graph to the other) and eliminates any node

whose low and high edges lead to the same node (i.e., redirects any incoming edge to such a node

to the target node of its low and and high edges). An ordered and reduced binary decision diagram

provides a compact and canonical representation for a boolean function [Bry92]. The fact that the

representation is unique has certain advantages. For example, checking whether a boolean function

is satisfiable boils down to comparing a BDD of that function with one for false.

Figure 2.2 illustrates an example BDD that encodes the transition function t1(~x, ~x′). Note that

the BDD is reduced and ordered; it uses the variable ordering x5, x6, x
′
5, x
′
6, x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4.

The selection of variable ordering can lead to significant reduction of size of BDDs. However, finding
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Figure 2.2: Binary Decision Diagram for boolean function t1(~x, ~x′) using variable ordering
x5, x6, x

′
5, x
′
6, x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4. The node with the x5 label is the root, and the square

nodes with labels 0 and 1 are terminals.

a good ordering is a problem of high complexity [BW96].

BDDs can implement boolean operations efficiently. For example, it is possible to construct

BDDs for t2 and t3 and compute efficiently R̂ by taking the conjunction of the predicates that

define the transition relations t1, t2, and t3. BDDs also support other important operations to

model checking. The implementation of the substitution operator f|xi←v, for example, simply

removes any node with an xi label and redirects their incoming edges to the low node (i.e., the

node that the low edge leads to) in case v = 0, or to the high node otherwise.

Symbolic model checking has been mainly used to verify hardware and abstraction of programs.

In these cases, models typically have fixed state. (See Section 2.3.) Model checking proceeds by

finding fixpoint of functions in a similar fashion as we show in Section 2.3.1 for calculating the set

of reachable states. Note that the program that we show in Section 2.1 does not allocate memory;

the states associated to executions of this program have fixed size.

2.3.2 Limitations of SMC with BDDs

SMC has been successfully applied in hardware verification [CGH+95, JEK+90, McM00]. Like

software, hardware circuits can model state, e.g., sequential circuits have memory. Unlike software,

a hardware circuit models only a fixed amount of state. A software analogy to a hardware circuit is
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a program that does not allocate data; it contains only a fixed number of primitive-type variables

and pre-allocated arrays. In essence, the hardware state has fixed size and is flat; it does not model

the heap.

In practice, software often makes use of memory allocation (e.g., with the creation of objects

in object-oriented programs). This observation makes an important practical difference between

hardware and software verification in SMC. The hardware state enables simple encodings of the

state and the transition relation with boolean functions. Unlike hardware verification, software

verification does require to encode heap operations such as reading or writing to an object field or

the allocation of a new object. These operations do not translate into efficient BDD operations.

This limitation prevents the direct use of SMC for software that manipulates dynamically allocated

data, such as object-oriented programs.

It is important to note that BDDs can represent states with heaps. For example, BDDs have

been used to support efficient implementations of program analysis [WL04,LH04]. In that context,

BDDs represent analysis information as sets and relations. More precisely, BDDs represent over-

approximations of the set of reachable heaps. However, such applications do not use BDDs to

represent states for concrete execution. Section 2.5 shows that execution is an important step in

model checking of code. Concrete execution requires to index into the state to read and write data; it

also requires dynamic object allocation and garbage collection. In addition, the model checker needs

to read the heap to compare states based on heap symmetry [BKM02,CGP99,Ios01,LV01,MD05].

To the best of our knowledge we do not know of any work that has used BDDs as a representation of

state for regular execution (as opposed to abstract interpretations of code). It remains to investigate

how BDDs or other similar representation can perform with our techniques.

2.4 Notes about the model checker input language

We now discuss the role of the input language in the design and implementation of model checkers.

For a long time, software model checkers have been applied to verify models written in lan-

guages suited for specification and design. Examples of such model checkers and their languages

include FDR with CSP [Hoa78,Ros94], NuSMV and its input language [CCGR99], and SPIN with

Promela [Hol97]. These model checkers take as input models that express important design deci-
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sions of an algorithm that are amenable to model checking, and leave out implementation details

that, in principle, should not influence verification. Model checking designs is very important: the

later one finds an error in the design the more expensive it is to fix the error.

Following a different approach, Godefroid [God97] proposed in 1997 Verisoft, a model checker

that operates directly on C programs. The motivation is that finding errors directly on imple-

mentation is also very important. Since Verisoft, many other model checkers have been de-

veloped to operate on actual code. Examples include Bandera [CDH+00], BogorVM [RDH03],

CMC [MPC+02], JCAT [DIS99], JNuke [ASB+04], JPF [LV01,VHB+03], SpecExplorer [VCST05],

and Zing [AQR+04]. These tools have shown practical use in software verification. CMC, for exam-

ple, a model checker for the C language, was used to verify Linux implementations of networking

code and file systems [MPC+02,ME04,YTEM04]. As another example, JPF was used to verify a

real time scheduling kernel [PVE+00] and several networking protocols [dSM06,dLM07,AG06].

It is important to point out that the target application influence the language design and

ultimately model checking. For example, CSP processes do not have state as it models only the

concurrency aspect of software (but CSP-Z [MS01] proposes an extension to support state). In

addition, neither NuSMV nor Promela support object allocation (but Promela supports dynamic

process creation). In the case of an implementation model the states correspond directly to program

states, including stack, heap, static area, and the program counter; and the transitions of the model

correspond to changes in program state, e.g., an assignment to a variable in the stack or a branch

decision taken in the control-flow (as it modifies the program counter). Model checking actual code

proceeds by exploring the different paths of the program, which requires executing actual code.

2.5 Key operations in explicit-state model checking

We already showed that the model checker can either represent state explicitly or symbolically.

Also, we discussed that model checkers can take models with different level of details, e.g. design

or implementation models. This dissertation focuses on explicit-state model checkers that take

implementation models as input. This section describes, in more detail, the key operations for this

kind of model checkers as appeared in Section 1.1.
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• Execution. This operation defines how the model checker carries out a deterministic step,

i.e., how the model checker runs a sequence of transitions that have no non-deterministic

choice. For example, code can run on top of an interpreter or directly on the target machine.

• Path exploration (backtracking). The model checker needs to remember which non-

deterministic choices it made during the execution of one path and also to provide a mecha-

nism to systematically explore the remaining choices, which correspond to uncovered paths.

To explore an uncovered path the model checker needs to restore the state to the point where

it made the choice and continue the exploration from that point. We call the restoration step

backtracking. For simplicity, we will refer to the entire operation just as backtracking from

hereon.

• Path pruning (state comparison). This operation enables a model checker to prune paths

from the exploration based on some specific criteria. Several criteria have been proposed in

the past [CKL04,God96,DB06,VPP06]. We will focus our attention to the one based on the

isomorphism of states [VHBP00,BKM02,RDHI03] as this is the predominant technique for

pruning paths during the state space exploration of sequential programs. In this approach,

the model checker prunes the path when it observes that the execution of that path produces

a state that has been visited in the exploration of previous paths. For this reason, we will

refer to path pruning just as state comparison from hereon.

Next, we discuss some implementation aspects of the operations above.

Execution

Some software model checkers use native representation of state in order to speed up execution.

With native states, the model checker executes code using the same environment as a regular

execution. In the case of C, the model checker runs the compiled code for the program on top of

the operating system. In the case of Java, the model checker runs the code on top of a regular

JVM. Examples of model checkers that follow this design include Verisoft [God97], CMC [MPC+02,

ME04, YTEM04], and BOX (see Section 4.3.2). Verisoft was the first model checker to directly

analyze the implementation code, specifically code written in the C language; CMC has been used
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to model check Linux implementations of networking code (e.g., AODV and TCP) and file systems;

and BOX is a model checker for sequential Java code used to evaluate ∆Execution.

It is important to note that this approach does not offer to the model checker a unified view

of the memory. For example, CMC does not keep track of the locations of the heap objects that a

program execution allocates. It reads state by following roots of heap objects which are available

to a test driver. A unified view of memory can be important to the efficient implementation

of memory-intensive operations, such as state comparison or backtracking. It enables the model

checker to manipulate state directly. We use the term special state representation in reference to

the representation of state that a model checker uses so that it can access state directly. JPF, for

example, represents the heap as a single array of integer arrays. It can efficiently restore parts of

this array for backtracking, and efficiently compare two instances of such arrays (or fragments of

the arrays) for state comparison.

In summary, native state representation can be helpful to execute transitions, special state

representation can be helpful for defining memory intensive operations such as state comparison

and backtracking.

Path exploration (backtracking)

We now discuss how EMC performs the exploration of paths. There are two common ways to

perform the exploration of paths in EMC. The first alternative is based on code re-execution. In

this approach, the model checker records the sequence of non-deterministic choices made along one

execution path. The model checker explores another path by guiding the execution with a sequence

of decisions derived from the exploration of some previous path. Another alternative is to make

the model checker to store the state when performing a non-deterministic choice. Backtracking

requires the model checker to restore the state that it previously stored. We focus our attention to

model checker that implements path exploration by storing and restoring state.

One alternative to store and restore state is to use the support of the operating system.

CMC [MPC+02], for example, a model checker written for the C language, forks the execution

in non-deterministic choices, effectively enforcing a copy-on-write discipline on the data that sev-

eral executions share. Another alternative is to make the state visible to the model checker, i.e.,
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to enable the model checker to store, and restore the state. We focus our attention on such kind

of model checkers that can manipulate the state. Examples of model checkers that operate in this

manner include BogorVM [RDH03], JPF [LV01,VHB+03], and SpecExplorer [VCST05].

Path pruning (state comparison)

Several techniques exist to prune paths from the state space exploration. (See Section 5.1.1.) The

techniques this dissertation proposes concentrate in pruning of paths based on isomorphism: the

model checker prunes a path when it leads to a states that is isomorphic to one that it has already

seen in previous explorations.

Typically, a model checker compares state by first computing a linear representation of state,

then computing a hash from the linear representation, and finally using the hash to lookup or add

the state in a hash table.

A model checker can compute a linear representation of the state, also called a linearization,

serialization, or marshalling [Ios01,LV01], by traversing the root of the heap in a depth-first order.

Two heaps are isomorphic if and only if their linearizations are equal.

2.6 Java PathFinder

We briefly discuss some concepts of JPF relevant for the techniques. More details on JPF can be

found elsewhere [LV01,VHB+03].

JPF is a general-purpose explicit-state model checker for Java bytecodes. It takes as input a

Java program and an optional bound on the length of the program execution and explores, up to

the given bound, all executions that the program can have due to different thread interleavings

and nondeterministic choices. JPF can generate as output those executions that violate a given

property, for example, violate a state assertion. JPF can also generate as output test inputs for the

subject program [VPK04,VPP05]. The main difference between JPF and a regular Java Virtual

Machine (JVM) is that JPF can backtrack the program execution to a previously visited choice

point and compare arbitrary JVM states.

JPF implements a special Java Virtual Machine (JVM) on top of a regular JVM. The main

difference between JPF and a regular JVM is that it can backtrack the program execution by
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restoring the state it previously encountered during the execution. Backtracking allows exploration

of different executions from the same state. JPF implements backtracking by storing and restoring

the state, and it represents this state in a special form (See Section 2.5).

2.6.1 JPF’s representation of state

To efficiently perform the operations listed in Section 2.5, JPF uses a special representation of the

state. This representation allows efficient storage, reconstruction, and comparison of states. This

is possible because the state is visible to the model checker. The model checker can read and write

to it directly. For example, the model checker can reconstruct only the portion of the state that

actually changed across multiple non-deterministic choices.

hashlinearization

execution state

state for storage and restoration

(static + heap + thread list)
special state

Figure 2.3: Flow of data between various state representations in EMC (JPF).

In practice, JPF keeps multiple representations of the state. Figure 2.3 relates these multiple

representations of state. This figure reflects the design of JPF, but generalizes for other model

checkers that use special state representation. The direction of the arrow indicates flow of data.

The special state includes the heap, static area, and threads and provides the building blocks for

the other specific representations. JPF, for example, internally represents an object with an array

of integers. It represents the heap with an array of integer arrays. The execution state consists of

a set of objects that JPF uses to interface with the special state. These data-structures read and

update the special representation during execution.

The storage and restoration state is a compact representation of the fragments of the special

state that allows fast reconstruction [VHBP00]. This representation reads and updates the special

state representation: it stores the state in the event of non-deterministic choices, and restores the

state when backtracking.

The representation called the state linearization [Ios01] enables comparison of state during the

exploration. Linearization is the process of building state linearizations. It strives for building a
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public class BST {

private Node root;

private int size;

public void add(int info) { ... }

public boolean remove(int info) { ... }

...

}

class Node {

Node left, right;

int info;

}

Figure 2.4: Fragment of the binary search tree appearing in Figure 1.1.

canonical representation of the state that the model checker can use for accurate comparison. (The

model checker can efficiently build a linearization from the special state when objects already have

linear representation in the special state representation. See Section 2.6.2) The model checker can

produce a state hash from the linearization, and use hash sets to efficiently check whether a state

has been seen before during the exploration.

2.6.2 Heap Representation

This section describes how JPF represents state internally. More specifically, we focus on how it

represents the heap. While JPF also represents stack, thread information, class information, and

all other parts of a JVM state, our techniques require only manipulations of the heap.

Each Java heap consists of a set of objects and some values for the fields of these objects. Each

object has an identity, and each field has a type that can be either primitive (int, boolean, float,

etc.) or a reference to another object (which can hold the special value null). JPF uses Java

integers to represent object identifiers. JPF also uses Java integers to encode all field values, be

they primitive or pointers. (JPF determines the meaning of various integers based on the field

types kept in the class information.) Conceptually, JPF represents each object as an integer array,

and the entire heap as an array of integer arrays.

Figure 1.1 shows a binary search tree class that implements a set. Each BST object stores the

size of the tree and its root node, and each Node object stores references to the two children and

an integer value. The BST class has methods to add and remove tree elements.

Figure 2.5 shows the representations of one example BST object in both JVM, as an object
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id:97

id:99

id:98

id:96 size: 3

info: 2

info: 3
Node

Node

Node

info: 1

BST

left right

left right

rightleft

96: [3, 97]

97: [3, 98, −1]

99: [1, −1, −1]

98: [2, 99, −1]

Figure 2.5: An example BST as an object graph and in the JPF heap representation.

graph, and in JPF, as an array of integer arrays. This example BST object can result from the

sequence BST t = new BST(); t.add(3); t.add(2); t.add(1). This figure shows for each object its

type, integer identifier, and the values of primitive fields. The reference fields not shown in the

graph have the value null, represented as -1 in JPF.

2.6.3 Model Java Interface

This section describes the Model Java Interface (MJI), an existing mechanism in JPF for accessing

the JPF state from the host JVM.

MJI enables delegation of JPF execution to the host JVM. MJI is analogous to the Java Native

Interface (JNI) [jni] that allows the JVM to delegate execution to native code, written in the C

language, for instance. MJI, like JNI, splits executions at the method granularity: the user can

mark each method for execution in either JPF or in the host JVM. (JPF uses special name mangling

to mark methods for the host JVM execution.) MJI also provides API that allows the host JVM

execution to manipulate the JPF state representation, for example to read or write field values or

to create new objects.

The libraries distributed with JPF use MJI to implement several parts of the standard Java

library. The user can employ MJI to implement functionality that either requires higher perfor-
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mance (e.g., copy of arrays) or is not available at the target level (e.g., reflection [SM03] in Java).

MJI enables higher performance as it makes possible the use of native implementation and pro-

vides a mechanism to extend the support of features that are unavailable on the target level. JPF

uses, specifically, MJI to implement several classes and methods from the java.io and java.lang

packages.

2.7 The AODV case study

We next present Ad-Hoc On-Demand Distance Vector (AODV) routing [PR99], a widely used

network protocol for wireless multi-hop ad hoc networks. We use AODV as a case study to evaluate

the techniques this dissertation describes.

We consider an implementation of AODV based on the AODV Draft (version 11) [PR99] and

implemented in J-Sim [J-S,Tya02], a network simulator written entirely in Java. AODV is a fairly

complex network protocol whose J-Sim implementation (not including the J-Sim library) has about

1200 lines of code. This case study was used previously to evaluate a model checker specialized for

J-Sim [SVH04,SVMH05].

An ad hoc network is a wireless network that comes together when and where needed, as a col-

lection of wireless nodes, without relying on any assistance from an existing network infrastructure

such as base stations or routers. Due to the lack of complete connectivity and routers, the nodes

are designed to serve as routers (i.e., relays) and assist each other in delivering data packets.

The AODV State

An AODV network consists of several AODV nodes. Each node, n, contains among others, the

following fields:

• seqnon is the identifier for this node

• bidn is a sequential number that identifies the broadcast messages this node sends

• bidcachen is a set including a history of packet identifiers that this node has already processed

• tablen is a routing table that stores information of the route to deliver messages.
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In AODV, each node n in the network maintains a routing table with a set of entries. Each

entry includes information about the route to a specific destination. A routing table entry (RTE)

at node n to a destination node d contains, among others, the following fields:

• nexthopn,d denotes the address of the node to which n forwards packets to d

• hopsn,d denotes the number of hops needed to reach d from n

• seqnon,d is a sequential used as a measure of freshness for this route

• lifetimen,d denotes the lifetime for this entry

Events

We use the term event to refer to an event that an environment, possibly external to the node,

sends to the node. An event triggers an action. We list, in the following, important events that

such environment sends to the nodes and also describe the actions the nodes take in response to

these events.

• Route from node n to d timeouts. Periodically, the protocol sends a route timeout event

to invalidate (but not delete) all RTEs that have not been used (e.g., to send or forward

packets to the destination) for a certain duration; the AODV node uses the field lifetime of

an RTE to determine whether it should invalidate the entry. Invalidating a RTE involves

incrementing seqnon,d and setting hopsn,d to ∞.

• Node n requests a route to destination d. If the node n has a valid route to d it responds

with the route. Otherwise, it first creates an invalid RTE to d with hopsn,d set to ∞. The

node then increments bidn and broadcasts a route request (RREQ) packet containing the

fields 〈n, seqnon, bidn, d, seqnon,d, hopCountq〉. The hopCountq field is initialized to 1. The

fields n and bidn together identify a RREQ packet.

• Delivering an RREQ packet that node n sends at node m. Each node m, receiving

the RREQ packet from node n, stores the pair 〈n, bidn〉 in the field bidcachen, so that m can

later check if it has already received a RREQ with the same source address and broadcast ID
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(this can happen in effect of multiple broadcasts). In the case the message is repeated, the

incoming RREQ packet is discarded. In the case it is the first time this message is processed,

m either satisfies or not the RREQ: it satisfies if n has a fresh enough route to m: node

m compares the field seqnom,d with the field seqnon,d that the packet RREQ includes. In

the case m satisfies the request, it sends a route reply packet (RREP) directly to d (using

unicast). In the case node m cannot satisfy the request, it rebroadcasts the packet to its

neighbors after incrementing the hopCountq in the packet.

• Broadcast ID timeout at node n. Each entry in the broadcast ID cache has a lifetime.

Periodically, a broadcast ID timeout event is triggered causing the deletion of cache entries

that have expired.

The RREP packet that a node m sends includes, among others, the fields seqnom,d and

hopCountd denoting, respectively, the freshness of the route that node m offers and the num-

ber of hops between the node that receives this packet and d. If node m offers node n a new route

to d, n compares seqnom,d (the destination sequence number of the offered route) to seqnon,d (the

destination sequence number of the current route), and accepts the route with the greater sequence

number. If the sequence numbers are equal, the offered route is accepted only if it has a smaller

hop count than the hop count in the RTE; i.e., hopsn,d > hopsm,d.

Safety property

An important safety property in a routing protocol such as AODV is the loop-freedom property.

Intuitively, a node must not appear more than once in a routing path; therefore, at each hop along

a path from a node n to a destination d, either the destination sequence number must increase

or the hop count must decrease. Formally, consider two nodes n and m such that m is the next

hop of n to some destination d; i.e., nexthopn,d = m. The loop-free property can be expressed as

follows [BOG02,MPC+02,TSH05,SVMH05]:

seqnon,d < seqnom,d ∨ (seqnon,d = seqnom,d ∧ hopsn,d > hopsm,d)
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Chapter 3

Mixed Execution

This chapter presents mixed execution, a technique that can reduce overall exploration time in

explicit-state model checkers that use special state representation.

Recall from Section 2.5 that explicit-state model checking of programs include three major

operations: execution, path exploration, and path pruning. Execution of transitions refers to

the operation that performs a deterministic step in the subject program, path exploration refers

to the operation that performs exploration of all program paths created with non-deterministic

choices, and path pruning refers to the operation that performs pruning of some of these paths

based on some notion of equivalence, e.g., isomorphism of states that the model checker visits

during the exploration. One possible way to implement these operations makes use of a special

state representation. In this approach, execution operates using state that the model checker

directly manipulates, path exploration stores and reconstructs such states at non-deterministic

choice points, and path pruning can perform, for instance, by comparing states: the model checker

identifies as equal two states visited in the exploration and prunes one of the two paths that leads

to that state.

On the one hand, such approach allows efficient reconstruction and comparison of states as the

model checker is able to directly manipulate the state. On the other hand, it sacrifices execution

time: every read and write needs to access such special state (see Chapter 1). Writes, in particular,

require the model checker to save information that enables restoration. In summary, the special

representation makes the exploration of all executions efficient, although it makes each individual

execution inefficient. Examples of model checkers that use special state representation include

AsmLT [Fou], BogorVM [RDH03], JPF [LV01,VHB+03], and SpecExplorer [VCST05]. We focus

on such kind of model checkers.

The main idea of mixed execution is to execute some parts of the program with other, more
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efficient, representation of state. The goal of the technique is to reduce overall exploration time in

model checkers that use special state representation.

We use the term deterministic blocks to refer to blocks whose execution cannot make non-

deterministic choices, e.g., due to thread interleavings or choices that the programmer may explicitly

introduce. Mixed execution works by changing the representation of state at the boundaries of

deterministic blocks. Within these boundaries, the model checker uses a representation more

efficient for execution; it does not “track” the intermediate state changes that occur along the

execution of sequential code.

We apply mixed execution on object-oriented programs and, in this context, deterministic blocks

will correspond to bodies of sequential methods. In principle, however, one can apply the technique

to any arbitrary block of deterministic code.

The technique applies the following steps to execute a method invocation: it translates the

inputs of the method call (receiver and arguments) to a representation that favors execution,

then executes the body of that method, and finally translates back the resulting state to the

representation the model checker uses for regular execution, path exploration, and path pruning.

With mixed execution, the model checker still executes the other parts of the program and

stores, restores, and compares the states as usual. It is important to point that mixed execution

only reduces the execution time of deterministic blocks; it does not affect the order of exploration,

the number of explored states, or any other aspect of the state exploration. In fact, the model

checker can apply mixed execution in conjunction with techniques that improve orthogonal aspects

of the exploration.

We evaluate mixed execution in the JPF model checker. Although we present the technique

in the context of JPF, our main idea – executing parts of model checking on different state repre-

sentations – generalizes to other model checkers that use some special state representation. These

checkers do not need to be for Java or even based on virtual machines.

We evaluate mixed execution and an optimization of our baseline implementation on seven

subject programs that use JPF to generate tests for data structures and on a larger case study. The

experimental results show that mixed execution can improve the overall time for state exploration

in JPF from 1.01x to 1.73x (with median 1.13x), while improving the time for the execution
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public static void main(String[] args) {

int M = Integer.parseInt(args[0]); // length of the sequence

int N = Integer.parseInt(args[1]); // range of inputs

main(M, N);

}

public static void main(int M, int N) {

BST bst = new BST(); // empty tree

for (int i = 0; i < M; i++) {

int methNum = Verify.getInt(0, 2);

int value = Verify.getInt(0, N-1);

Verify.beginAtomic(); // begins deterministic block

switch (methNum) {

case 0: bst.add(value); break;

case 1: bst.remove(value); break;

}

Verify.endAtomic(); // ends deterministic block

stopIfVisited(bst);

}

}

Figure 3.1: Driver for bounded-exhaustive exploration of the BST subject.

of deterministic blocks from 0.91x to 3.05x (with median 1.64x). Additionally, the optimization

improves the baseline mixed execution implementation from 1.03x to 1.35x (with median 1.08x).

We will use the term mixed mode to refer to the mode of execution where the model checker

changes state representation on the boundaries of a method call, and the term native represen-

tation to refer to a representation of state that favors execution. This representation is typically

native to some environment. In the case of Java, for instance, native representation refers to the

representation of state that the JVM uses.

Next, we present an example that highlights the key aspects in mixed execution. Then, we

present more details of the technique, its implementation in JPF, and the experimental results we

obtain. Finally, we discuss limitations of our technique and our current implementation as well as

future work.

3.1 Example

This section presents an example that illustrates how mixed execution can speed up state explo-

ration.

Figure 3.1 shows the method main(int M, int N) that expresses a driver similar to the one in
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Figure 1.4. The model checker uses this driver to explore the state space of the BST class that

appears in Section 1.3.1. The model checker explores all sequences of add and remove operations up

to the bound M for for the sequence length and the bound N for the range of input values. The library

method Verify.getInt(int lo, int hi) non-deterministically chooses a number between lo and

hi (including lo and hi). The library methods beginAtomic and endAtomic mark a deterministic

block1; these manually added annotations instruct the model checker to ignore non-deterministic

choices within a given block. The goal of the driver is to explore different trees that can arise

during the executions. The driver uses state matching [VPP05,VPP06,XMN04] to compare only

the state of the tree, which the reference in bst denotes. If the state has been already visited during

the exploration, the library method stopIfVisited instructs the model checker to backtrack the

execution.

Without mixed execution, the model checker executes add, and remove methods using a special

representation of state, which slows down every field read and write during the execution of method

calls. Note, however, that to perform comparison and backtracking the model checker requires to

access the state of the tree only at the beginning and at the end of these methods as they are

deterministic.

We now highlight the key steps for executing the method calls to add and remove in mixed

mode.

• At the beginning of each deterministic method invocation, mixed execution translates all the

objects reachable from the method parameters, including the tree reachable from this, from

the special representation into the native representation.

• Mixed execution then invokes the method on the tree using native state representation. The

method execution can modify state.

• At the end of each method execution, mixed execution translates the state back from native

representation into the special representation. The model checker then resumes the explo-

ration that operates on the special state.

1Prior to its version 4, JPF allowed explicit non-deterministic choices introduced by the programmer, say via
Verify.getInt(), to appear inside atomic blocks. We run mixed execution on version 3.1.2 but do not introduce
any non-deterministic choice inside these blocks.
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The speedup (or slowdown) that mixed execution achieves depends on the cost of performing

the translations and the length of the method execution. The smaller the state is, the less mixed

execution has to copy during state translations. Also, the longer the execution is, the more the

model checker saves by executing with native states.

The baseline implementation of mixed execution copies the entire state to native representa-

tion regardless of the amount of state the execution actually reaches. For this reason, we call it

eager translation. We optimized the baseline implementation to perform the translation only when

execution reads a field. We call this form of translation lazy.

In our running example with BST, the results vary with the value for the bounds M and N.

We set M = N in all experiments, and the value ranges from 5 to 10, as done in previous studies

on testing [VPP05, VPP06, XMN04]. For these bounds, JPF with mixed execution (and lazy

translation) takes from 1.04x to 1.22x less time for overall state exploration than JPF without

mixed execution. Considering only the executions of add and remove methods, mixed execution

provides from 1.43x to 1.53x speedup.

It is important to point that the state space exploration includes, besides execution, path

exploration and pruning. Mixed execution only reduces the method execution time, which can be

significantly high, while the cost of the rest of the state exploration remains the same.

3.2 Technique

We next present in more detail the operations involved in mixed execution. We describe the

pseudo-code of a procedure that intercepts method invocations in an explicit-state model checker

for object-oriented programs. The procedure that appears in Figure 3.2 shows the essential parts

of our technique.

We assume that the methods on which the model checker applies mixed execution are deter-

ministic, i.e., execution makes no thread-interleavings or user-provided non-deterministic choices.

We also assume that the model checker uses special state representation. This is key to obtaining

execution speed up.

The procedure invokeMethod takes as input a method name and a list of arguments and produces

as output the state that results from the method execution. We use an array of integers to identify
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void invokeMethod(Method m, int[] args) {

if (m.shouldBeExecutedOnNative()) {

// translate arguments to native form

Object[] inputs = translateSpecialToNative(args);

Throwable throwable = null;

try { // uses reflection to invoke the method

Object result = m.invoke(inputs);

} catch (Throwable t) {

throwable = t;

} finally { // executes regardless of exception

// translate arguments back to the special representation

translateNativeToSpecial(inputs);

if (throwable == null) {

// translate the return value

int result = translateNativeToSpecial(result);

pushOnStack(result);

} else { // method call raised an exception

// translate the exception

int specialThrowable = translateNativeToSpecial(throwable);

raiseException(specialThrowable);

}

}

} else { /* regular invocation */ ... }

}

Figure 3.2: Pseudo-code of the method invocation in model checker using mixed execution.

the arguments of the method call. As we showed in Section 2.6, JPF identifies an object with an

integer. The method signature distinguishes between the use of an integer to encode an object or

a primitive. Important to note is that the method execution operates with a state representation

different than the one that the model checker uses.

Mixed execution associates to each method a flag indicating whether or not it should execute

in mixed mode, i.e., whether or not it should execute the method outside the control of the model

checker. If the model checker makes a call to a method that has the flag set, the procedure

invokeMethod translates the state of all method arguments, including the receiver, to a native form.

The method translateSpecialToNative performs such translation. It then executes the method.

Note that the inputs to the method call have Object type instead of integer. Finally, the procedure

translates the state the method execution produces or modifies back to the representation the

model checker uses. The method translateNativeToSpecial performs such translation.

The procedure handles the cases when the method execution returns normally as well as the

case when it throws an exception. When the method execution returns normally, the procedure

translates the resulting state to the model checker representation and pushes it on the stack. When
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the method execution raises an exception, the procedure catches the exception and indicates that to

the model checker. In either case (i.e., regular or exceptional execution), mixed execution translates

the state of the input arguments back to the model checker special representation since execution

can mutate any part of the state reachable from the method arguments.

Note that the arguments represent roots for the part of the heap that the method can manipu-

late. The heap may be much larger than the part reachable from the roots, but the method cannot

manipulate the part that is not reachable from the roots. In general, however, the roots should

also include static fields.

3.3 Implementation

This section details the invokeMethod procedure that Figure 3.2 describes in the context of JPF. We

first provide additional background on JPF that is necessary for the discussion, then we describe dif-

ferent implementations of the algorithm that translates rooted heaps in JPF: translateSpecialToNative

and translateNativeToSpecial.

We use the term JPF state to refer to the special representation of the program state that JPF

internally uses, and the term JVM state to refer to the native representation we use to speed up

execution in JPF. JVM state corresponds, as we mentioned before, to the state of the JVM that

actually hosts JPF.

3.3.1 Model Java Interface

We implement mixed execution by modifying the source code of JPF. Our implementation uses, in

a novel way, a mechanism that already exists in JPF; to quote from the JPF manual [MVP]:

Host VM Execution - JPF is a JVM that is written in Java, i.e. it runs on top of a

host VM. For components that are not property-relevant, it makes sense to delegate

the execution from the state-tracked JPF into the non-state tracked host VM. The

corresponding Model Java Interface (MJI) mechanism is especially suitable to handle

IO simulaion [sic] and other standard library functionality.
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void jpfInvoke(Method m, int[] args) {

if (m.shouldBeExecutedOnJVM()) {

// get the JPF execution environment and

// translate arguments from JPF to JVM

MJIEnv env = JPF.getMJIEnv();

Object[] inputs = translateJPF2JVM(env, args);

Throwable throwable = null;

try {

// use reflection to invoke the method on JVM,

// giving it the translated values as the arguments

Object result = m.invoke(inputs);

} catch (Throwable t) {

} finally {

// translate the heap reachable from the roots from JVM to JPF

translateJVM2JPF(env, inputs);

if (throwable == null) {

// translate the return value

int jpfResult = translateObjectJVM2JPF(env, result);

MJI.pushOnStack(jpfResult);

} else { // method call raised an exception

// translate the exception

int jpfThrowable = translateObjectJVM2JPF(env, t);

MJI.raiseJPFException(jpfThrowable);

}

}

} else { /* regular invocation */ ... }

}

Figure 3.3: Pseudo-code of the method invocation for the host JVM execution.

MJI is an API that allows the host JVM to manipulate JPF state. The novelty of mixed

execution is the use of MJI to delegate execution from a state representation that JPF tracks

into a native representation (which JPF does not track); this translation is valid even for blocks

of code that are property-relevant. Mixed execution executes on the host JVM some program

code that can modify the program state and thus affect a property, for example, part of the state

that an assertion reads. As a matter of fact, we use our technique in the execution of property-

relevant blocks during the model checking of a network protocol. Previous uses of MJI in JPF did

not execute such program code on JVM and did not translate the state between JPF and JVM

representations.

Figure 3.3 specializes the invokeMethod procedure appearing in Figure 3.2 to JPF. The method

jpfInvoke uses MJI to read from and write to the JPF state; the variable env provides access

to the MJI API. The method translateJPF2JVM translates the state from the JPF to the JVM

representation and the method translateJVM2JPF performs the inverse translation. Note that these
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methods read and write to the JPF heap via the MJI API, which is accessible via variable env.

The baseline translation algorithm always translate at the beginning of a deterministic block

the entire state reachable from a set of roots from the JPF to the JVM representation. Note

that even this state can be a tiny part of the entire JVM state. We call the baseline translation

eager. Effectively, the eager mixed execution translates the entire state that any execution of the

deterministic block may read or write. In contrast, lazy translation starts the execution without

translation and then, during the execution, translates on demand those state parts that the specific

execution does read or write. As a result, lazy mixed execution performs less translation and can

speed up the eager mixed execution.

3.3.2 Eager Translation

Figure 3.4 shows the pseudo-code of the method that translates the state from JPF to JVM. The

inputs to the method are an MJIEnv object, which encodes the entire environment/state of the JPF

execution, and an array of method arguments, encoded in JPF as integers (see Section 2). (For

instance methods, the first argument represents this.) The output of the method is an array of

JVM objects that correspond to the arguments. The method uses a depth-first traversal of the

JPF heap reachable from args to create an isomorphic JVM heap [MK01,BKM02]. The method

creates two maps that keep the correspondence between the JPF and JVM object identities. These

maps initially start empty, but the helper method adds for each JPF object an appropriate JVM

object. The method uses the map from JPF to JVM to handle heap aliases. (The use of the map

also ensures that the translation terminates when the heap has cycles.) The map from JVM to

JPF will be used during the translation at the end of the execution. The method and the helper

use several MJI calls (on the env objects) to get the values of fields and to get the types of the

arguments and fields.

Figure 3.5 shows the pseudo-code of the method that translates the state from JVM to JPF.

The inputs to the method are an MJIEnv object and an array of the inputs, which represent the

roots of the heap at the beginning of the execution. The effect of the method is to update the

JPF state. The method uses a depth-first traversal of the JVM heap reachable from the inputs

roots to appropriately update the JPF heap to be isomorphic to the corresponding JVM heap. The
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Map<int, Object> mapJPF2JVM;

Map<Object, int> mapJVM2JPF;

// main method that translates all arguments in the pre-state

Object[] translateJPF2JVM(MJIEnv env, int[] args) {

mapJPF2JVM = new Map<int, Object>();

mapJVM2JPF = new Map<Object, int>();

Object[] result = new Object[args.length];

for (int i = 0; i < args.length; i++) {

Type t = env.typeOf(args[i]);

if (t.isPrimitive()){ result[i] = correspondingPrimitiveObject(t,args[i]); }

else{ result[i] = translateObjectJPF2JVM(env, args[i]); }

}

return result;

}

// helper method that translates all fields reachable from a reference

Object translateObjectJPF2JVM(MJIEnv env, int jpfPointer) {

if (jpfPointer == MJIEnv.NULL) return null;

if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);

// create a new object

Object o = translateOneReferenceJPF2JVM(env, jpfPointer);

// set the fields of the object recursively

foreach (field f in o.getFields()) {

int value = env.getFieldValue(jpfPointer, f);

Type t = env.typeOf(f);

if (t.isPrimitive()){ setField(o, f, correspondingPrimitiveObject(t, value)); }

else{ setField(o, f, translateObjectJPF2JVM(env, value)); }

}

return o; // return the new object with all fields translated

}

// helper method that translates only one reference

Object translateOneReferenceJPF2JVM(MJIEnv env, int jpfPointer) {

if (jpfPointer == MJIEnv.NULL) return null;

if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);

// get the type of JPF object "jpfPointer"

Class c = env.getClass(jpfPointer);

// create a new object of class "c" using reflection

Object o = c.newInstance();

// update the mappings between JPF and JVM objects

mapJPF2JVM.put(jpfPointer, o);

mapJVM2JPF.put(o, jpfPointer);

return o;

}

Figure 3.4: Pseudo-code of the algorithm that translates the state from JPF to JVM.

traversals keep the set of visited objects. It is important to distinguish this set and the map from

JVM to JPF objects. In the translation from JPF to JVM, a map is used both to keep track of

visited (JPF) objects and to provide the mapping of identities. However, in the translation from

JVM to JPF, a map is only used to provide the mapping of identities, because an object should

be traversed even if it is in the map. Moreover, the translation must preserve the original JPF

identity of nodes. The translation method and its helper use several MJI calls (on the env objects)
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Set<Object> visited;

// main method that translates the post-state

void translateJVM2JPF(MJIEnv env, Object[] inputs) {

visited = new Set<Object>();

for (int i = 0; i < inputs.length; i++) {

if (!(env.typeOf(inputs[i]).isPrimitive())) {

translateObjectJVM2JPF(env, inputs[i]);

}

}

}

// helper method that translates one object

int translateObjectJVM2JPF(MJIEnv env, Object o) {

if (o == null) return MJIEnv.NULL;

if (!visited.contains(o)) {

visited.add(o);

// get type of the object

Class c = o.getClass();

// get (or create if necessary) the corresponding JPF object

int jpfPointer;

if (!mapJVM2JPF.contains(o)) {

// create new JPF object of the same type

jpfPointer = env.createNewObject(c);

mapJVM2JPF.add(o, jpfPointer);

} else {

jpfPointer = mapJVM2JPF.get(o);

}

// set the fields of the object recursively

foreach (field f in c.getFields()) {

// use reflection to get the field value

Object value = f.getFieldValue(o);

Type t = f.getType();

if (t.isPrimitive()) {

env.setFieldValue(jpfPointer, f, correspondingPrimitiveJPF(t, value));

} else {

env.setFieldValue(jpfPointer, f, translateObjectJVM2JPF(env, value));

}

}

}

return mapJVM2JPF(o);

}

Figure 3.5: Pseudo-code of the algorithm that translates the state from JVM to JPF.

to create new objects and set the values of fields.

3.3.3 Lazy Translation

Lazy translation is an optimization of the baseline translation that only perform the translation

of the parts of the heap that a method execution actually needs during execution. While eager

translation translates the entire heap at the beginning of the execution, the lazy algorithm translates

only the arguments and not all fields reachable from them. During the execution, however, lazy
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translation performs a check for each field read and write to determine whether the field has been

translated from JPF to JVM. If not, lazy translation translates only that one field and continues

the execution. By the end of the execution, lazy translation typically translates into JVM only a

small part of the heap reachable from the method arguments at the beginning.

Lazy translation requires some changes to the code of the methods executed by mixed execution.

Specifically, lazy translation requires the checks for each field read and write. We achieve those

checks using code instrumentation. Figure 3.6 shows a part of the code from the TreeMap example

before and after instrumentation. For each field, the instrumentation adds (i) a boolean flag that

tracks whether the field has been translated from JPF to JVM, (ii) a method for reading the field

value (translating it from JPF, if necessary), and (iii) a method for writing the field value. The

instrumentation also replaces all field reads and writes in the original code with the invocations

of appropriate methods. Finally, the instrumentation adds a special constructor to create objects

without setting the flags. A similar instrumentation has been used previously in testing and model

checking [BKM02,VPK04].

At the end of a method execution on the host JVM, mixed execution with lazy translation

traverses the JVM heap similarly as mixed execution with eager translation. In contrast to eager

translation, however, only those fields whose flags are set to true are translated from JVM to JPF

and recursively followed further. A further optimization would be to have “dirty flags” to avoid

translation from JVM to JPF for the fields whose value was not changed.

3.4 Evaluation

We next discuss the experiments used to evaluate mixed execution. We have implemented mixed

execution by modifying the JPF code [MVP] to include the algorithms from figures 3.3, 3.4, and 3.5.

We have also implemented a prototype tool that automates instrumentation for lazy translation as

shown in Figure 3.6.

We evaluate mixed execution on six subject programs that use JPF for state exploration in data

structures. We also evaluate mixed execution on a network protocol for which JPF finds an injected

error. The blocks of code delegated to mixed execution are deterministic: they are sequential code

without manually inserted non-deterministic choices (Verify.getInt calls).
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// Original code, before instrumentation.

public class TreeMap {

static class Entry {

Entry left;

...

}

public Object put(Object key, Object value) {

... = e.left; // field read

e.left = ...; // field write

} ...

}

// Code after instrumentation.

public class TreeMap {

static class Entry {

Entry left;

boolean _mixed_is_copied_left = false;

Entry _mixed_get_left() {

if (!_mixed_is_copied_left) {

MJIEnv env = JPF.getMJIEnv();

int jpfPointer = env.getFieldValue(mapJVM2JPF(this), "left");

left = translateOneReferenceJPF2JVM(env, jpfPointer);

_mixed_is_copied_left = true;

}

return left;

}

void _mixed_set_left(Entry e) {

left = e;

_mixed_is_copied_left = true;

}

...

}

public Object put(Object key, Object value) {

... = e._mixed_get_left(); // field read

e._mixed_set_left(...); // field write

} ...

}

Figure 3.6: Example code before and after instrumentation.

We performed all experiments on a Pentium 4 3.4GHz workstation running under RedHat En-

terprise Linux 4. We used Sun’s 1.4 JVM, allocating 1.5 GB for the maximum heap size, and

JPF version 3.1.2. We compare the time that JPF takes for exploration with and without mixed

execution. In both cases, we set JPF to use breadth-first state exploration. We also enable all

JPF optimizations, including partial-order reductions [VHBP00], the use of MD5 hashing func-

tion [MVP], and the exact state comparison with respect to isomorphism [VPP05,VPP06].
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3.4.1 Basic subjects

We evaluate mixed execution on the six data structures listed in Figure 3.1. We take the subjects

from previous studies on model checking and testing:

• bst is our running example that implements a set using binary search trees [BKM02,XMSN05]

• disjset is an implementation of a union-find data structure implementing disjoint sets [XMN04]

• linkedlist, treemap, and vector are from the Java 1.4 Collection Framework.

• trie implements a dictionary, i.e., it stores a collection of strings sorted lexicographically [XMSN05]

• ubstack is an implementation of a stack bounded in size, storing integer objects without

repetition [SLA02,XMN04,CS04,PE05]

Our state exploration considers the methods that add, remove, and search for elements in each

data structure, as listed in Figure 3.1.

subject methods explored
bst add, remove

disjset union, find
linkedlist add, removeLast, contains
treemap put, remove, get

trie add, is word, is proper prefix
ubstack push, pop
vector addElement, removeElement, elementAt

Table 3.1: Subjects used in the Mixed execution experiments.

Each experiment uses an execution driver similar to that in Figure 3.1. By default, we use

mixed execution with lazy translation. Figure 3.2 tabulates the results. We set the same bounds

for the method-sequence length and for the range of values. For each subject and several bounds,

we tabulate the number of states that JPF explores (which is the same with or without mixed

execution), the total number of bytecodes that JPF executes (with mixed execution, the host JVM

executes some bytecodes), the overall time for exploration, and the time for execution of methods

marked for mixed execution. All times are in milliseconds. The columns labeled JPF and mixed

represent the runs of JPF without and with mixed execution, respectively. The speedup columns

show the improvement that mixed execution provides.
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experiment # bytecodes method exec. only total time

subject N # states std. mixed std. mixed speedup std. mixed speedup

5 188 147670 17501 252 174 1.45x 1521 1468 1.04x
6 731 804672 81559 763 499 1.53x 2699 2489 1.08x

bst 7 2950 4302804 388830 2872 2004 1.43x 7747 6722 1.15x
8 12235 22671033 1867625 14340 9536 1.50x 32420 27262 1.19x
9 51822 118130316 8999159 73605 48568 1.52x 155304 129815 1.20x
10 223191 610379638 43444381 368394 246979 1.49x 775443 636310 1.22x

5 77 207261 21507 158 173 0.91x 1988 1961 1.01x
disjset 6 516 2067901 161408 917 640 1.43x 7835 7222 1.08x

7 4747 27152409 1874435 12114 6583 1.84x 77685 68629 1.13x

5 3906 302915 105135 719 647 1.11x 3528 3423 1.03x
linkedlist 6 55987 4218362 1446824 8547 7729 1.11x 29408 28194 1.04x

7 960800 70962589 24157789 147158 129656 1.13x 487105 465557 1.05x

5 72 92740 7586 274 167 1.64x 1421 1325 1.07x
6 185 361600 25864 599 340 1.76x 1976 1775 1.11x

treemap 7 537 1223256 79470 1458 790 1.85x 3419 2763 1.24x
8 1613 4629574 277476 4671 2340 2.00x 8533 6083 1.40x
9 4709 16681289 952976 16281 7556 2.15x 26575 17245 1.54x
10 13189 54581750 3008954 60371 23500 2.57x 88914 51375 1.73x

5 32 120869 4839 238 146 1.63x 1306 1261 1.04x
6 64 293899 10855 350 251 1.39x 1614 1524 1.06x

trie 7 128 690129 24359 616 397 1.55x 2223 2021 1.10x
8 256 1679127 54311 1150 624 1.84x 3851 3282 1.17x
9 512 4018501 120103 2500 1171 2.13x 7466 6174 1.21x
10 1024 9190465 263549 5328 2385 2.23x 15052 12346 1.22x

5 616 181217 19677 391 232 1.69x 1807 1659 1.09x
ubstack 6 3865 1561823 132475 1511 577 2.62x 4522 3521 1.28x

7 27455 14940706 1038230 11410 3740 3.05x 26475 17422 1.52x

5 5042 892349 120244 806 428 1.88x 3633 3258 1.12x
vector 6 68781 13596654 1605126 10096 3601 2.80x 31989 25346 1.26x

7 1140940 247372481 26241879 172468 58623 2.94x 954179 820633 1.16x

Table 3.2: Comparison of JPF without and with mixed execution.
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experiment method exec. only total time
name N # states eager lazy speedup eager lazy speedup

4 25 127 89 1.43x 1158 1122 1.03x
5 72 231 157 1.47x 1389 1327 1.05x

treemap 6 185 437 338 1.29x 1900 1776 1.07x
7 537 1071 777 1.38x 3079 2758 1.12x
8 1613 3687 2375 1.55x 7311 6136 1.19x
9 4709 12164 7582 1.60x 22171 17313 1.28x
10 13189 40834 24252 1.68x 68388 51669 1.32x

4 16 151 86 1.76x 1120 1080 1.04x
5 32 196 153 1.28x 1300 1260 1.03x

trie 6 64 291 226 1.29x 1602 1521 1.05x
7 128 493 375 1.31x 2185 2014 1.08x
8 256 1229 680 1.81x 3888 3281 1.19x
9 512 3027 1189 2.55x 7917 6190 1.28x
10 1024 6609 2270 2.91x 16590 12315 1.35x

Table 3.3: Comparison of eager and lazy translations for Mixed execution.

The results show that mixed execution can reduce the overall state exploration time from 1.01x

to 1.73x (with median 1.13x) , while reducing the method execution time from 0.91x to 3.05x (with

median 1.64x). Note that for very short executions (such as DisjSet for bound 5), mixed execution

may actually slow down JPF as the overhead of translation outweighs the benefit of execution on

the host JVM. As a matter of fact, for all subjects and very small bounds, mixed execution slows

down JPF. However, the more important cases are when the execution is long. As the results show,

the longer the execution gets, the more benefit mixed execution provides.

3.4.2 Comparison of Eager and Lazy translations

Figure 3.3 compares mixed execution with eager translation and mixed execution with lazy trans-

lation. For two subjects and several sizes, we tabulate the time for execution of methods marked

for mixed execution and the overall time for state exploration.

Compared to eager translation, lazy translation reduces the overall time from 1.03x to 1.35x

(with median 1.08x), while reducing the method execution time from 1.28x to 2.91x (with median

1.47x). Note again that the longer the execution gets, the more benefit lazy translation provides.

But, in contrast to the previous experiment that compares mixed and regular execution, this

experiment shows that lazy translation outperformed eager for all bounds.
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3.4.3 AODV Case Study

We also evaluated mixed execution on a larger application, namely the implementation of the

Ad-Hoc On-Demand Distance Vector (AODV) routing protocol [PR99] in the J-Sim network sim-

ulator [J-S]. This application was previously used to evaluate a J-Sim model checker [SVMH05].

AODV is a routing protocol for ad-hoc wireless networks, i.e., a wireless network where each

node dynamically decides, based on its current local state, the destination of a packet. We use the

term AODV node, or just AODV, to refer to both the network node and the software component

that models that node. Each AODV node contains an identifier and a routing table that describes

where a message should be delivered next, depending on the destination. The safety property we

check in this study expresses that all routes from a source to a destination should be free of cycles,

i.e., the same node cannot appear more than once in any route (see Chapter 2.7).

It is important to point out that we simplified the J-Sim simulator in order to conduct this study

on JPF. We realized that J-Sim creates several threads to manage the simulation. In particular,

J-Sim creates threads to deliver messages across different network nodes. In such scenario, JPF

could not explore a large portion of the AODV state space. We re-implemented the communication

layer the simulator uses. This allowed the exploration to scale better.

3.4.4 Test driver

As discussed in Chapter 1, a test driver is a component that constructs sequences of method

invocations to exercise the subject under different scenarios. We use the term event to denote an

event of the network protocol that the test driver emits by invoking a specific operation, e.g., a

message loss or a route request. For each event we associate a function that indicates whether it is

possible to invoke the event operation in a particular state. We call such function the event guard.

It takes a state as input and returns a boolean. The driver produces an environment that executes

all sequences of protocol events, satisfying the guards, up to a configurable bound on the sequence

length. The list that follows describes the events and their corresponding guards.

• Route from node n to d timeouts. This event is enabled whenever node n has a valid routing

table entry to destination d. The event invalidates the routing table entry.
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experiment #bytecodes method exec. only total time
N #states std. mixed std. mixed speedup std. mixed speedup

8 2295 24612410 17466413 9070 2770 3.27x 49740 43681 1.14x
9 3209 37172718 26750218 13765 3889 3.54x 74330 60382 1.23x
10 4338 54179173 39374489 24258 5575 4.35x 123920 87837 1.41x

Table 3.4: Model checking AODV without and with mixed execution.

• Node n requests a route to destination d: This event is enabled if the node does not have a

valid entry in the routing table to the destination d. The event sends a broadcast message of

type RREQ (stands for route request).

• Delivering an AODV packet that node n sends at node m. This event is enabled if the network

contains at least one AODV packet such that n is the next hop towards the destination.

The event removes this packet from the network and forwards it to node n. The AODV

implementation at node n processes this packet accordingly.

• Broadcast ID timeout at node n. This event is enabled if there is at least one entry in

the broadcast ID cache of node n (see Chapter 2). The event is handled by deleting these

broadcast id entries.

• Restart of the AODV process at node n. This event is always enabled. This event reinitializes

the state the AODV at node n.

• Loss of an AODV packet with node n as address. This event is enabled if the network contains

at least one AODV packet that has node n as destination. The event removes this packet

from the network.

3.4.5 Error injection and oracle

We consider an initial state of an ad hoc network consisting of K nodes: n0, n1, . . . , nK−1. The

initial topology is a chain where each node is a neighbor of both the node to its left and the node

to its right (if they exist). All i nodes, for 0 ≤ i ≤ K − 2 , have valid routing table entries to node

nK−1. We only consider nk−1 as the destination node.

We manually inject an error as follows. We change the procedure that processes event: timeout

of the route to destination d at node n. Instead of invalidating the entry and keeping it in the
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Figure 3.7: Sequence of AODV states leading to a bug. An arrow from a node to another indicates
that the first can route a message to n2 using the second. The dashed arrow denotes a dummy
route created when n1 sends a broadcast messages on request for a route to n2.

table, the procedure deletes the entry to node n from the routing table. This change produces a

different protocol behavior that results in a violation of the safety property.

Consider the following scenario. The network is initially a chain with K = 3, then a timeout

event of the route n1 to destination n2 occurs, and later n0 offers n1 a route to n2. Figure 3.7

illustrates the different states of the network according to this scenario up to a state that violates

the safety property. The arrows denote the destination a message should take if a node needs to

send/forward a packet to n2. Initially, the network forms logically a chain of AODV nodes. Then

the timeout event occurs; this event causes the removal of the route to n2 from the routing table

of n1. Node n1 will then request a route to node n2 and when sending this event establishes the

sequence number to -∞. Finally, node n0 offers node n1 a route to node n2 via itself. Node n1

accepts this root because seqno0,2 > seqno1,2. (seqno1,2 corresponds to the dummy value node

n1 associates in its table when requested a route to n2.) The acceptance of this route produces a

states that violates the property of interest as the route from n0 and n1 to n2 contain a cycle. (See

Section 2.7)

The case of K > 3 is similar. The reader can find a detailed explanation of this injected error

elsewhere [SVH04].
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3.4.6 Mixed execution.

To apply mixed execution on AODV, we needed to determine which parts of the AODV code to

execute on the host JVM. We first marked to run on mixed mode all methods of the data structures

that AODV uses to represent protocol data. This includes routing tables and packet queues. Then,

we profiled the model checker execution to find that it spends a lot of execution time in the methods

from the library class Port. This class handles the sending and receiving of packets between network

nodes [Tya02], so we also marked those methods for execution in mixed mode.

Figure 3.4 shows the improvements obtained with mixed execution on AODV. We tabulate, for

a range of number of nodes and length of the event path, given by column N, the overall state-space

exploration time and the method execution time. Mixed execution improves the overall exploration

time from 1.14x to 1.41x (with median 1.23x), and the method execution time from 3.27x to 4.35x

(with median 3.54x).

3.5 Limitations and Future Work

We now list the limitations of mixed execution (and its current implementation) as well as plans

for future work.

Safe handling of atomicity. The technique and implementation takes as input a set of

methods for execution in mixed mode. We assume that the input methods are deterministic. We

do not currently provide a tool to infer deterministic blocks, and our implementation does not

check, during execution, whether blocks are indeed deterministic. Inferring or checking determin-

istic blocks can help one to apply mixed execution. Extensive research has been done related to

the detection of data-races and errors due to lack of atomicity in multi-threaded programs both

statically [BLR02,FQ03] and dynamically [SBN+97,WS06]. Data races are concurrency errors that

result from accesses to data, which different threads share, without adequate synchronization to

protect such accesses. Atomicity is a stronger notion of concurrency; it imposes additional con-

straints on the interleavings so that executions only produce behaviors equivalent to those in which

blocks declared atomic run sequentially. There can be program blocks which are free of data races

but are not atomic [FQ03,WS06]. Mixed execution requires the user to annotate which input meth-
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ods are atomic (deterministic) so that the model checker will not miss any behavior by imposing a

sequential execution order. A very conservative approach to automate this check in mixed execu-

tion is to track for each thread the set of shared variables it can access. The model checker would

then identify as potentially non-deterministic an execution of a method that can access data that

another thread can read or write. We leave as future work to investigate approaches for identifying

atomic blocks to speed up execution.

Improved translation from JVM to JPF state. The current implementation of Mixed

execution writes back to the JPF state all fields that have been read during the execution of a

method in mixed mode. We can improve the translation from JVM to JPF representation to avoid

writing fields which are not modified in the execution. It is possible, for example, to associate to

each field a dirty flag that indicates whether or not execution wrote to that field, or associate a

dirty flag to each object.

Improved translations with memoization. Using immutable data is a common design

pattern. For example, most classes in the java.lang package follow this pattern: it is not possible

to mutate the state of a String or an Integer object. Mixed execution can also be improved by

identifying types that are strictly functional or functional with respect to the environments a test

driver exercises. The model checker can translate to native representation the objects of these

types once and for all (modulo garbage collection). The native state could keep references to these

objects in native representation to avoid repeated translations of state.

Support static fields. The current implementation of mixed execution does not consider

static fields, i.e., it does not update the model checker’s special state representation when code

that executes in mixed mode writes to static fields. The experiments did not exercise such cases

and thus static fields was not an issue in our evaluation. In principle, we can instrument all writes to

non-final static fields to record modification. Mixed execution could therefore identify and mutate

the parts of the state of the model checker that corresponds to static fields that have been modified

during mixed execution.

Speeding up native method calls. The current implementation of Mixed execution uses

Java reflection [SM03] to invoke operations on the subject under test. This invocation is slow.

The implementation can avoid the cost of reflective calls by instrumenting specialized operations
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Figure 3.8: Model checkers with different environments for execution. The right arrows denote
progressive program transformations. The leftmost model checker executes program transitions on
the program mc, the second on the regular JVM, and the third directly on the host machine.

on each subject or even creating specialized bytecode instructions, in the case of JPF, for each

method or class that runs in mixed mode.

Engineering a model checker for fast execution. We want to investigate different designs

in the construction of a program model checker. In particular, we want to investigate designs of

model checkers that can lead to efficient execution of transitions. Figure 3.8 illustrates possible

alternatives for the construction of a model checker.

In the first alternative, the model checker is a Java program that runs on top of a JVM. The

program to model check, pgm, is passed as data to the program mc that corresponds to the model

checker. This results in slow execution: the bytecodes of the subject program executes in a virtual

machine that runs on top of a regular virtual machine.

The second alternative specializes the model checker to one specific program. This avoids

interpretation of the transitions of pgm in mc. Automatic transformation from the first to the

second design requires a compiler, in essence a partial evaluator [JGS93], that takes the model

checker mc as input and produces a new model checker specialized to the new program. More

precisely, the compiler translates the program mc : pgm × datapgm → output into the program

mcpgm : datapgm → output. The input data refers to the parameters for the search and output

refers to a description of the program paths that the model checker explores. Another approach

to perform this transformation is to modify the input program to become model checkable. For

example, instrumenting field writes to allow restoration of state and introducing non-deterministic
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choices wherever is necessary.

The last design alternative illustrates a model checker that runs on top of the host machine.

The program mcpgm, combining model checker and input program, is written in C, for instance.

Transformation of the second to the third design requires translation from Java to, say, C [jik].

JPF, for example, follows the first alternative. The JPF’s JVM runs on top of a regular virtual

machine, but the program to model check runs on top of JPF’s virtual machine. BOX follows the

second alternative. BOX provides a library for storing, partially restoring state, and re-executing

the program. The user needs to write a test driver and instrument the program specially to allow

state restoration (see Section 4.3.2 for details). Verisoft [God97] and CMC [MPC+02] follow the

third design. The model checker runs directly on top of the host machine.

We want to investigate how the alternatives above impact efficiency in model checkers that

operate on special state representations and on top of a regular JVM, such as JPF.
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Chapter 4

Delta Execution

This chapter presents Delta Execution, referred to as ∆Execution, a technique that can reduce

overall exploration time in explicit-state model checkers.

∆Execution performs program execution simultaneously on several states. The technique ex-

ploits the fact that many execution paths in state-space exploration partially overlap. ∆Execution

speeds up the state-space exploration by sharing the common parts across the executions and sep-

arately executing only the “deltas” where the executions differ. Central to ∆Execution is the use

of an efficient representation and manipulation of sets of states.

Symbolic model checking (SMC) [JEK+90,CGP99] inspired ∆Execution. SMC enabled a break-

through in model checking as it provided a much more efficient exploration than explicit-state model

checking. Conceptually, SMC executes the program on a set of states and exploits the similarity

among executions. Typical implementations of SMC represent states with Binary Decision Di-

agram (BDD) [Bry92], a data structure that supports efficient operations on boolean functions.

However, heap operations prevent the direct use of BDDs for object-oriented programs. Although

heaps are easily translated into boolean functions [LH04, WL04], the heap operations – includ-

ing field reads and writes, dynamic object allocation, garbage collection, and comparisons based

on heap symmetry [CGP99, LV01, Ios01, BKM02, MD05] – do not translate directly into efficient

BDD operations. ∆Execution considers states that include heap. We focus our attention to model

checking of programs that use dynamically allocated data, such as object-oriented programs.

∆Execution executes the programs on set of states. As we will show, this special form of

execution can be less expensive due to the presence of constants which are valid across all states

in the set. In addition, it can also optimize path exploration and path pruning, which are two

important and costly operations in explicit-state model checking.

We implemented ∆Execution in two model checkers: JPF and BOX (from Bounded Object
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eXploration). As presented in Section 2.6, JPF is a popular general-purpose model checker for

Java programs. BOX, in contrast, is a specialized model checker that we developed for effi-

cient exploration of sequential Java programs. These implementations enabled the evaluation of

∆Execution on model checkers that follow different design principles. For instance, we identified

that ∆Execution improves the overall exploration time in both model checkers, but the improve-

ment is due to different reasons.

We used two scenarios of exploration in our evaluation. The first scenario applies ∆Execution

using exhaustive exploration (See Section 1.5.1). The second applies ∆Execution in conjunc-

tion with abstract matching, a non-exhaustive technique for state space exploration that Visser

et al. [VPP06] recently proposed. Similarly to mixed execution, ∆Execution becomes more effec-

tive with the increase in the number of states the model checker explores. We control this variable

with the size of the method sequence and range of input used in a driver that guides the state space

exploration (See Section 1.5.1).

In the exhaustive exploration, we first evaluate ∆Execution on ten simple subject programs.

The results show that the technique improves exploration time from 0.88x to 126.80x (with median

5.60x) in JPF and from 0.58x to 4.16x (with median 2.23x) in BOX, while taking from 0.46x to

11.50x (with median 1.48x) less memory in JPF and from 0.18x to 2.71x (with median 1.18x) mem-

ory in BOX. Then, we evaluate the technique using exhaustive exploration on the AODV [PR99]

case-study. AODV refers to an implementation of a networking protocol with errors (See details in

Section 2.7). ∆Execution improved exploration time for AODV from 0.88x to 2.04x (with median

1.72x).

Our results also show that ∆Execution improves exploration time from 0.92x to 6.28x (with me-

dian 4.52x) in JPF with abstract matching. We conducted this experiment with 4 of the 10 simple

programs used with exhaustive exploration. The relative decrease of improvement in ∆Execution

under this scenario is due to the fact that abstract matching reduces the total number of states in

the state space.

Next we show an example that illustrates key aspects of the technique. Then we detail the

technique, discuss its implementation using the JPF and BOX model checkers, and discuss the

experimental results. Finally, we discuss limitations and future work.
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4.1 Example

We next present an example that illustrates how ∆Execution speeds up the state-space exploration

compared to standard execution, i.e., to the the regular form of execution.

Figure 1.1, appearing in Section 1.3, shows a binary search tree class that implements a set.

Each BST object stores the size of the tree and its root node, and each Node object stores an integer

value and references to the two children. The BST class has methods to add and remove tree

elements. A test sequence for the binary search tree class consists of a sequence of method calls,

for example BST t = new BST(); t.add(1); t.remove(2).

4.1.1 The standard driver

Figure 1.4 shows an example driver program that enables a model checker to systematically explore

different states of the tree, i.e., to generate sequences of method calls that reproduce different states

of the tree. This driver operates using standard execution and is thus called the standard driver.

Figure 1.5 illustrates the states the model checker visits when using this driver to perform the

state space exploration. We omit from the graph edges that correspond to invocations of delete

as each “delete” edge is either a self-loop or leads to some existing state. The model checker

applies breadth-first search to avoid missing important parts of the state space (see Section 1.5.1

for details).

Similarity of paths

Figure 1.3, appearing in Section 1.4, shows at the top states of trees with size 3. The exploration

executes add(4) on each of the five trees of size 3, i.e., the standard driver separately executes

add(4) on each pre-state, resulting in the five post-states shown at the bottom of the figure.

We use the term individual execution to emphasize the use of a single state in standard execu-

tion. A sequence of program counters defines one path. As we focus on sequential programs we also

relate a path to the sequence of branching decision that an execution makes, i.e., the sequence of

decisions also defines a path. We therefore informally say that execution follows a path: execution

can follow that sequence of branching decisions to reconstruct that path. Also, we informally say

that a state follows a path to denote that the execution starting with that state follows a path.
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Important to note on the example above is that the executions of add(4) on some of these

states follow the same path, i.e., each individual execution makes the same sequence of branching

decisions. For instance, for the balanced tree and the tree to its left, execution adds a new node

with value 4 to the right of the right child of the root. In either case, execution follows the path

given by the following sequence of program counters (see Section 1.1): 1, 2, 4, 5, 6, 7, 10, 5, 6, 7, 8,

9, 17. We will show that explicit-state model checking can leverage on this similarity with the use

of ∆Execution. This example shows the particular case when two executions have identical paths.

It is important to stress that ∆Execution exploits the commonalities among program paths; it does

not require paths to be identical.

4.1.2 The delta driver

Figure 4.1 shows a driver that explores states using ∆Execution. We refer to this driver as the

delta driver. The delta driver is similar to the standard driver: both use non-deterministic choices

to select different methods and input values, both prune the exploration based on the state of bst,

and both use breadth-first exploration. However, the delta driver differs from the standard driver

in the way it operates on the state. First, in the delta driver, the variable bst represents several

individual trees (i.e., states that correspond to a standard execution.). We use the term ∆State to

refer to a form of state that includes several individual states. Second, the delta driver backtracks

the state differently than the standard driver. Specifically, the method newIteration returns one

∆State containing all individual states that should be explored in a given iteration. In the first

iteration, this ∆State is a singleton that has only the initial state (i.e., the empty tree). The

method merge at the end of one method execution path “collects” those trees (from bst) that have

not been previously visited and thus should be explored in the next loop iteration. Effectively, the

merge method combines all distinct states reachable with the method sequences of length i into

one ∆State that the iteration i+1 will use. The method newValue updates the internal state for

∆Execution as backtracking should not restore some parts of that internal state (specifically the

statemask discussed in Section 4.2.2).
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// N bounds sequence length and parameter values

public static void mainDelta(int N) {

BST bst = new BST(); // empty tree

for (int i = 0; i < N; i++) {

bst = Delta.newIteration(bst);

int methNum = Verify.getInt(0, 1);

int value = Verify.getInt(1, N);

Delta.newValue();

switch (methNum) {

case 0: bst.add(value); break;

case 1: bst.remove(value); break;

}

Delta.merge(bst);

}

}

Figure 4.1: Driver for delta execution.

Split and Merge

While standard execution invokes add(4) separately against each standard state, ∆Execution in-

vokes add(4) simultaneously against a set of standard states. ∆Execution itself operates on one

state, the ∆State . We call the operation that combines standard states into a ∆State merging.

The top of Figure 1.3 illustrates one set consisting of the five pre-states. (Section 4.2.1 describes

how to efficiently represent a ∆State, and Section 4.2.5 describes how to efficiently merge states.)

During program execution, ∆Execution occasionally needs to split the ∆State. For add(4), for

example, the five pre-states follow the same execution path until the first check of temp.right ==

null. At that point, ∆Execution splits the set of states: one subset (of two states) follows the

true branch, and the other subset (of three states) follows the false branch. Note that the split

enforces the invariant that all states in a set follow the same path.

Each split introduces a non-deterministic choice point in the execution. For add(4), one execu-

tion with two states terminates after creating a node with value 4 and assigning it to the right of the

root. The figure depicts this execution with the left arrow. The other execution with three states

splits at the second check of temp.right == null: two (middle) states follow the true branch, and

one (rightmost) state follows the false branch. These two executions terminate without further

splits, appropriately adding the value 4 to the final trees. Note that ∆Execution produces the same

number of states as in standard execution but it may result in less executions.

We next describe merging ; the operation that ∆Execution performs to build a ∆State from
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individual states. Merging is a dual operation of splitting: while splitting partitions a set of states

into subsets, merging combines several sets of states (or several individual states) into a larger set.

∆Execution can, in principle, perform merging on any sets of states at any program point. For

example, ∆Execution could merge all three sets of states from Figure 1.3 when they reach size++.

However, our current implementation of ∆Execution considers only the program points that are

method boundaries: it merges the states only after all of them finish the execution path for one

method, since that is also where state comparison is done.

Performance

We next discuss how the performance of ∆Execution and standard execution compare. In our

running example, ∆Execution requires only three execution paths to reach all five post-states that

add(4) creates for the five pre-states. Additionally, these three paths share some prefixes that can

be thus executed only once. In contrast, standard execution requires five executions of add(4),

one execution for each pre-state, to reach the five post-states. Also, each of these five separate

executions needs to be executed for the entire path.

The experimental results show that ∆Execution is faster than standard execution for a number

of subject programs and values for the bound N from the drivers. For example, for the binary search

tree example and N = 10, ∆Execution speeds up JPF 7.11x and our model checker BOX 1.67x,

while using over 2x more memory in JPF and 3x more memory in BOX. (On average, ∆Execution

uses roughly the same amount of memory as standard execution; BST is one of the subjects where

∆Execution shows the smallest speedup. We use BST for illustrations due to its simplicity.)

As Chapter 1 shows, explicit-state model checking of programs include three major operations:

(i) execution, (ii) path exploration, and (iii) path pruning. Execution of transitions refers to the

operation that performs a deterministic step in the subject program, path exploration refers to the

operation that performs exploration of all program paths created with non-deterministic choices,

and path pruning refers to the operation that performs pruning of some of these paths based on

some notion of equivalence, e.g., isomorphism of states that the model checker visits during the

exploration. We refer to path exploration just as backtracking (backtracking is part of path

exploration) and path pruning just as state comparison. It is important to state that we focus on
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model checkers that perform backtracking by storing and restoring state and perform path pruning

by comparing states during the state space exploration. (For a more detailed description of these

operations, refer to Section 2.5.)

We summarize next how ∆Execution can improve the time to perform each of these operations.

• ∆Execution may reduce execution time. This happens because it is sometime possible to

use constants valid across all states in the set. For example, an operation that reads the

field size in either the pre or post-state takes constant time, instead of time linear to the

number of states, because all trees have the same size. Figure 4.2 shows two measurements

of constants in the exploration of the state space of trees. The graph on the left shows the

ratio of the constant field accesses over the total number of field accesses. It shows how often

constants appear in an iteration, but does not measure the savings related to these accesses.

The graph to the right shows the savings in field access that constant in ∆Execution provides.

If ∆Execution accesses a constant field in a set with n states, we count n − 1 savings: had

not the constant been detected, execution would need to iterate over n states. The ratio of

savings relate the total savings due to field accesses in ∆Execution with the total number

of field accesses in standard execution, per iteration. For both metrics, the higher the value

the better: execution benefits when constants appear often but mainly when the number of

field accesses (reads or writes) decreases compared to standard execution. Both graphs show

the measurement of constants with the increase of the iteration number in the delta driver.

They show results for both the binary search tree in Figure 1.1 and an implementation of a

red-black tree, with N = 10 (the maximum length of the method sequence the user provides

to the standard and delta drivers.). Note that the effects of constants are more positive in

trees which are “more balanced”, as there are more trees in the set that share the same shape.

• The reduction in the number of executions enables less backtracking. Figure 1.3 illustrates

that ∆Execution traverses only 3 of the 5 paths that lead each individual pre to a post-state.

The paths only split when it is not possible for all the states in the current set to evaluate

the branching condition to the same value.

• ∆Execution enables optimization of state comparison. This happens because it is possible
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Figure 4.2: Metrics for constant field accesses. Plot to the left shows the hit ratio of field accesses
in ∆Execution which are constant. The plot to the right shows the ratio of access savings in
∆Execution compared to the total number of accesses in standard execution.

to compute state linearizations (see Section 2.5) on set of states, i.e., to compute sets of

linearizations simultaneously instead of one-by-one. In practice, this enables the linearization

algorithm to internally share the prefixes of the linearization.

The trade-off between ∆Execution and standard execution can be summarized like this: ∆Execution

performs fewer executions (avoiding separate execution of the same path shared by multiple states)

than standard execution, but each execution in ∆Execution (that operates on a set of standard

states) is more expensive than in standard execution (that operates on one standard state). It

is also important to note that the presence of constants (i.e., values that are the same across a

set of states) is essential to efficient operations under ∆Execution. Whether ∆Execution is faster

or slower than standard execution for some exploration depends on several factors, including the

number of execution paths, the number of splits, the cost to execute one path, the number of

constants, and the sharing of execution prefixes.

4.2 Technique

The key idea of ∆Execution is to execute a program simultaneously on a set of standard states. We

first discuss the representation the technique uses for set of individual states. We describe in detail

two main operations on ∆States: splitting, which divides a set of states into subsets for executing

different program paths, and merging, which combines several states together into a set. We also
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Figure 4.3: ∆State for the five pre-states from Figure 1.3.

present how program execution works in ∆Execution and how ∆Execution facilitates an optimized

comparison of states.

4.2.1 ∆State

∆Execution represents a set of individual standard states as a single ∆State. Each ∆State encodes

all the information from the original individual states. A ∆State includes ∆Objects that can store

multiple values (either references or primitives) that exist across the multiple individual states

represented by a ∆State.

Figures 4.4, 4.5, and 4.6 show the classes used to represent ∆States for the binary search tree

example. We discuss here only the field declarations from those classes. (The methods from those

classes implement the operations on ∆State and are explained later in the text.) Each object of

the class DeltaNode stores a collection of references to Node objects, and each object of the class

DeltaInt stores a collection of primitive integer values. The BST and Node objects are changed such

that they have fields that are ∆Objects.

Figure 4.3 shows the ∆State that represents the set of five pre-states from Figure 1.3. Each

∆State consists of layers of “regular” objects and ∆Objects. In this ∆State, each of the pre-states

has a corresponding state index that ranges from 0 to 4. Note that we could extract each of the
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public class BST {

private DeltaNode root = DeltaNode.NULL;

private DeltaInt size = DeltaInt._new(0);

public void add(DeltaInt info) {

if (get_root().eq(DeltaNode.NULL))

set_root(DeltaNode._new(info));

else

for (DeltaNode temp = get_root(); true; )

if (temp.get_info().lt(info)) {

if (temp.get_right().eq(DeltaNode.NULL)) {

temp.set_right(DeltaNode._new(info));

break;

} else temp = temp.get_right();

} else if (temp.get_info().gt(info)) {

if (temp.get_left().eq(DeltaNode.NULL) {

temp.set_left(DeltaNode._new(info));

break;

} else temp = temp.get_left();

} else return; // no duplicates

}

set_size(get_size().add(DeltaInt._new(1)));

}

public DeltaBoolean remove(DeltaInt info) { ... }

}

class Node {

DeltaNode left, right;

DeltaInt info;

Node(DeltaInt info) { this.info = info; }

}

Figure 4.4: Instrumented BST and Node classes.

five pre-states by traversing the ∆State while indexing it with the appropriate state index. For

example, we can extract the balanced tree using state index 2. Also note that some of the values

in the example ∆State are “don’t cares” (labeled with “?”) because the corresponding object is

not reachable for that state index. For example, the first node to the left of the root has “?” in the

field info for the last two states (with indexes 3 and 4) because those states have the value null

for the field root.left.

While each ∆Object conceptually represents a collection of values, the implementation does

not always need to use collections or arrays. In particular, a value is often constant across all

(relevant) states. For example, the info fields for all tree leaves in Figure 4.3 have constant values

(for the relevant states). Our implementation uses an optimized representation for constants. The

optimization is straightforward, and we do not discuss it in detail. We point out, however, that the
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class DeltaNode {

// maps each state index to a Node object

Node[] values; // conceptually

DeltaNode(int size) { values = new Node[size]; }

private DeltaNode(Node n) { values = new Node[]{ n }; }

public static DeltaNode _new(DeltaInt info) {

return new DeltaNode(new Node(info));

}

public boolean eq(DeltaNode arg) {

StateMask sm = StateMask.getStateMask();

StateMask trueMask = new StateMask(sm.size());

StateMask falseMask = new StateMask(sm.size());

foreach (int index : sm) {

if (values[index] == arg.values[index]) { trueMask.enable(index); }

else { falseMask.enable(index); }

}

boolean result;

if (trueMask.isEmpty()) result = false;

else if (falseMask.isEmpty()) result = true;

else result = (Verify.getInt(0, 1) == 0); // split

StateMask.setStateMask(result ? trueMask : falseMask);

return result;

}

public DeltaNode get_left() {

StateMask sm = StateMask.getStateMask();

DeltaNode result = new DeltaNode(sm.size());

foreach (int index : sm) {

DeltaNode dn = values[index].left;

result.values[index] = dn.values[index];

}

return result;

}

public void set_left(DeltaNode arg) {

StateMask sm = StateMask.getStateMask();

IdentitySet<Node> set = new IdentitySet<Node>();

foreach (int index : sm) {

Node n = values[index];

if (set.add(n)) { n.left = n.left.clone(); /* true if n was added */ }

n.left.values[index] = arg.values[index];

}

}

public DeltaNode get_right() { ... }

public void set_right(DeltaNode arg) { ... }

public DeltaInt get_info() { ... }

public void set_info(DeltaInt arg) { ... }

}

Figure 4.5: New DeltaNode class.

optimization is important both for reducing the memory requirements of ∆States and for improving

the efficiency of operations on ∆States.
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class DeltaInt {

// maps each state index to an integer value

int[] values; // conceptually

DeltaInt add(DeltaInt arg) {

StateMask sm = StateMask.getStateMask();

DeltaInt result = new DeltaInt(sm.size());

foreach (int index : sm)

result.values[index] = values[index] + arg.values[index];

return result;

}

...

}

Figure 4.6: Part of DeltaInt library class.

4.2.2 Splitting

∆Execution operates on a ∆State that represents a set of standard states. ∆Execution can perform

many operations on the entire set. It needs to split the set only at a branch control point (e.g.,

an if statement) where some states from the set evaluate to different branch outcomes (e.g., for

one subset of states, the branch condition evaluates to true, and for the other subset of states, it

evaluates to false). We call such points split points; effectively, they introduce non-deterministic

choice points as ∆Execution needs to explore both outcomes. (Note that no split is necessary even

for branch control points when all states evaluate to the same branch outcome.)

One challenge in ∆Execution is to efficiently split ∆States. Our solution is to introduce a

statemask that identifies the currently active states within a ∆State. Each statemask is a set of

state indexes. At the beginning of an execution, ∆Execution initializes the statemask to the set of

all state indexes. For example, the execution of add(4) for the ∆State from Figure 4.3 starts with

the statemask being {0, 1, 2, 3, 4}.

At the appropriate branch points, ∆Execution needs to split the set of states into two subsets.

Our approach does not explicitly divide a ∆State into two ∆States; instead, it simply changes

the statemaskto reflect the splitting of the set of states. Specifically, ∆Execution builds a new

statemask to identify the new subset of active states in the ∆State. It also saves the statemask

for the other subset that should be explored later on. The execution then proceeds with the new

subset.

After ∆Execution finishes the execution path for some (sub)set of states, it backtracks to some
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unexplored split point to explore the other path using the statemask saved at the split point.

Backtracking changes the statemask but restores the ∆State to exactly what it was at the split

point. A model checker can implement backtracking in several ways. JPF, for instance, stores and

restores state while BOX uses program re-execution. Section 4.3 elaborates this discussion.

To illustrate how the statemaskchanges during the execution, consider the example from Fig-

ure 1.3. The statemask is initially {0, 1, 2, 3, 4}. At the first split point, the execution proceeds

with the statemask being {0, 1}. After the first backtracking, the statemask is set to {2, 3, 4}. At

the second split point, the execution proceeds with the statemask being {2, 3}. After the second

backtracking, the statemask is set to {4} for the final execution.

Appropriate use of a statemask can facilitate optimizations on the ∆State. Consider, for ex-

ample, a ∆Object that is not a constant when all states are active. This object can temporarily be

transformed into a constant if all its values are the same for some statemask occurring during the

execution. For instance, in our running example, the value of root.right becomes the constant

null when the statemask is {0, 1}. Additionally, the statemask allows the use of sparse represen-

tations for ∆Objects: instead of using an array to map all possible state indexes into values, a

sparse ∆Object can use representations that map only the active state indexes into values, thereby

reducing the memory requirement.

4.2.3 Program execution model

We next discuss how ∆Execution executes program operations. The key is to execute each op-

eration simultaneously on a set of values. ∆Execution uses a non-standard program execution

that manipulates a ∆State that represents a set of standard states. Such non-standard execution

can be implemented in two ways: (i) instrumenting the code such that the regular execution of

the instrumented code corresponds to the non-standard execution [KPV03, VPK04, XMSN05] or

(ii) changing the execution engine such that it interprets the operations in the non-standard seman-

tics [dPX+06]. Our current implementation uses instrumentation: the subject code is pre-processed

to support ∆Execution.

We use parts of the instrumentation to describe the semantics of ∆Execution.
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Classes

The instrumentation changes the original program classes and generates new classes for ∆Objects.

Figure 1.1 from Chapter 1 shows a part of the original code for the binary search tree example.

Figures 4.4, 4.5, and 4.6 show the key parts of the instrumented code for this example. Figure 4.4

shows the instrumented version of the original BST and Node classes. Figure 4.5 shows the new

class DeltaNode that stores and manipulates the multiple Node references that can exist across the

multiple states in a ∆State. Figure 4.6 shows the class DeltaInt that stores and manipulates

multiple int values; this class is a part of the ∆Execution library and is not generated anew for

each program.

It is important to note that ∆Objects are immutable from the perspective of the instrumented

code in the same way that regular primitive and reference values are immutable for standard

execution. This allows sharing of ∆Objects. For example, this allows direct assignment of one

DeltaInt object to another (e.g., int x = y simply becomes DeltaInt x = y). Our implementation

internally mutates ∆Objects to achieve higher performance, in particular when values become

constant across active states. The mutation handles the situations that involve shared ∆Objects

and require a “copy-on-write” cloning.

Types

The instrumentation changes all types in the original program to their delta versions. Comparing

figures 1.1 and 4.4, notice that the occurrences of Node and int have been replaced with the new

DeltaNode class (from Figure 4.5) and the DeltaInt class (from Figure 4.6), respectively. The

instrumentation also appropriately changes all definitions and uses of fields, variables, and method

parameters to use ∆Objects.

Field accesses

The instrumentation replaces standard object field reads and writes with calls to new methods that

read and write fields across multiple objects. For example, all reads and writes of Node fields are

replaced with calls to getter and setter methods in DeltaNode. Consider, for instance, the field read

temp.left. In ∆Execution, temp is no longer a reference to a single Node object but a reference
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to a DeltaNode object that tracks multiple references to possibly many different Node objects. The

left field of Node is now accessed via the get left method in DeltaNode. This method returns a

DeltaNode object that references (one or more) Node objects that correspond to the left fields of

all temp objects whose states are active in the statemask. In general, this can result in an execution

split when some objects in temp are null.

Operations

The instrumentation replaces (relational and arithmetic) operations on reference and primitive

values with method calls to DeltaNode and DeltaInt objects. All original operations on values now

operate on ∆Objects that represent sets of values. More precisely, the methods in ∆Objects do not

need to operate on all values but only on those values that correspond to the active state indexes

as indicated by the statemask.

Consider integer addition as an example of arithmetic operation. In standard execution, ad-

dition takes two integer values and creates a single value. In ∆Execution, it takes two DeltaInt

objects and creates a new DeltaInt object. The add method in DeltaInt (from Figure 4.6) shows

how ∆Execution conceptually performs pairwise addition across all active state indexes for the two

DeltaInt objects. Our implementation optimizes the cases when those objects are constant (to

avoid the loop or state indexing).

For an example relational operation, consider reference equality. The method eq in DeltaNode

(from Figure 4.5) performs this operation across all active state indexes. Note that this method

can create a split point in the execution if the result of the operation differs across the states. If so,

eq introduces a non-deterministic choice (with getInt) that returns a boolean true or false after

appropriately setting the statemask.

Method calls

The instrumentation replaces a standard method call with a method call whose receiver is a

∆Object, which allows making the call on several objects at once. Note that each call intro-

duces a semantic branch point (since different objects may have different dynamic types) and can

result in an execution split.
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4.2.4 Optimized state comparison

Heap symmetry [MD05, LV01, CGP99, Ios01] is an important technique that model checkers use

to alleviate the state-space explosion problem. Heap symmetry detects equivalent states: when

the exploration encounters a state equivalent to some already visited, the exploration path can

be pruned. In object-oriented programs, two heaps are equivalent if they are isomorphic (i.e.,

have the same structure and primitive values, while their object identities can vary) [Ios01,MD05,

BKM02]. An efficient way to compare states for isomorphism is to use linearization (also known as

serialization or marshalling) that translates a heap into a sequence of integers such that two heaps

are isomorphic if and only if their linearizations are equal.

∆Execution exploits the fact that different heaps in a ∆State can share prefixes of linearization.

Instead of computing linearizations separately for each state in a set of states, ∆Execution simul-

taneously computes a set of linearizations for a ∆State. Sharing the computation for the prefixes

not only reduces the execution time but also reduces memory requirements as it enables sharing

among the sequences used for linearizations.

We next present how to transform a basic algorithm that separately linearizes each state from a

∆State into an efficient algorithm that simultaneously linearizes all states from a ∆State. Figure 4.7

shows a pseudo-code of a basic algorithm that iterates over each active state from the statemaskand

computes the linearization for the individual state. For simplicity of presentation, this algorithm

assumes that the heaps contain only reference fields of only one class. Our actual implementation

handles general heaps with objects of different classes, primitive fields, and arrays.

The method linObject produces a sequence of integers that represent linearization for the

state reachable from o. When o is null, linObject returns a singleton sequence with the value

that represents null. When o is a reference to a previously linearized object, linObject returns a

singleton sequence with the identifier used for that object, which handles object aliasing. The map

ids stores the association between objects and their ids. When o is an object not yet linearized,

linObject creates a new id for it, appropriately extends the map, and linearizes all the object fields.

The method linFields linearizes the fields of a given object. A typical implementation is itera-

tive, as shown in the first linFields method. It is important to note that the value of the expression

o.getField(f).values[index] determines the linearizations for different states. We target this ex-
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void linearize(Object o, smask sm) {

foreach (int index : sm) {

Pair(Map _, Seq s) = linObject(o, new Map(), index);

checkVisited(index, s);

}

}

Pair<Map, Seq> linObject(Object o, Map ids, int index) {

if (o == null) return Pair(ids, Seq(NULL));

if (o in ids) return Pair(ids, Seq(ids.get(o)));

int id = ids.size();

return linFields(o, ids.put(o, id), Seq(id), index);

/*return linFields(o, 0, ids.put(o, id), Seq(id), index);*/

}

Pair<Map, Seq> linFields(Object o, Map ids,

Seq seq, int index) {

for (int f = 0; f < o.numberOfFields(); f++) {

Object fo = o.getField(f).values[index];

Pair(ids, Seq s) = linObject(fo, ids, index);

seq = seq.append(s);

}

return Pair(ids, seq);

}

Pair<Map, Seq> linFields(Object o, int f, Map ids,

Seq seq, int index) {

if (f < o.numberOfFields()) {

Object fo = o.getField(f).values[index];

Pair(Map m, Seq s) = linObject(fo, ids, index);

return linFields(o, f + 1, m, seq.append(s), index);

} else return Pair(ids, seq);

}

Figure 4.7: Non-optimized linearization of ∆State.

pression to be the split point in our optimized linearization algorithm. The algorithm thus needs

to explore different execution paths from this point, effectively performing backtracking.

We want to implement the optimized algorithm, supporting explicit backtracking, on the regular

JVM. An intermediate step in the optimization is to transform the algorithm to conceptually use

the continuation-passing style [FWH01]. In practice, the method linFields is transformed into a

recursive implementation shown in the second linFields method. This version exposes the field

index f and linearizes the fields of o between f and o.getNumberOfFields(). This version permits

the linearization to continue an execution from the point it was left at in linFields. Note that

linFields and linObject manipulate functional objects Map and Seq, which facilitates backtracking

of the state.
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Stack stack; // mutable structure

void linearize(Object o, smask sm) {

stack = new Stack();

Triple(Map _, Seq s, smask tm) =

linObject(o, new Map(), sm);

checkVisited(tm, s); // all states from tm have sequence s

while (!stack.isEmpty()) {

Tuple(Object o, int f, Map ids,

Seq seq, smask nm) = stack.pop();

Triple(Map _, Seq s, smask tm) =

linFields(o, f, ids, seq, nm);

checkVisited(tm, s);

}

}

Triple<Map, Seq, smask>

linObject(Object o, Map ids, smask sm) {

if (o == null) return Triple(ids, Seq(NULL), sm);

if (o in ids) return Triple(ids, Seq(ids.get(o)), sm);

int id = ids.size();

return linFields(o, 0, ids.put(o, id), Seq(id), sm);

}

Triple<Map, Seq, smask>

linFields(Object o, int f,

Map ids, Seq seq, smask sm) {

if (f < o.numberOfFields()) {

Triple(Object fo, smask em, smask nm) =

split(o.getField(f), sm);

if (nm is not empty)

stack.push(o, f, ids, seq, nm);

Triple(smask om, Map m, Seq s) = linObject(fo, ids, em);

return linFields(o, f + 1, m, seq.append(s), om);

} else return Triple(sm, ids, seq);

}

Figure 4.8: Optimized linearization of ∆State.

Figure 4.8 shows the pseudo-code of the optimized algorithm that linearizes a ∆State in the

∆Execution mode. The new methods linObject and linFields do not take one state index but

take a statemask with several active state indexes to linearize. These methods now return a

statemask and one linearization for all the states in that statemask. The linearization can introduce

non-deterministic choices to enforce the invariant that all states in the statemask have the same

linearization prefix. When the linearization completes for some statemask, it needs to backtrack

to explore the remaining statemasks.

The stack object stores the backtracking points. Each entry stores the state that needs to be

restored to continue an execution from a split point: the root object, the field index, the map for
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object identifiers, the current linearization sequence, and the statemask. While stack is mutable,

the other structures are immutable, which makes it easy to restore the state. The while loop in

linearize visits each pending backtracking point until it finishes computing all linearizations.

The only source of non-determinism in the linearization is the reading of fields across different

states from the statemask. The method split takes as input a ∆Object do = o.getField(f) and a

statemasksm. It returns a standard object fo = do.values[idx] for some idx from sm, a statemaskem

(which comes from “equals mask”) of index values such that do.values[index] == fo, and a

statemasknm (which comes from “non-equal mask”) of index values such that do.values[index]

!= fo. At this point, linFields first pushes on the stack an entry with the backtracking informa-

tion for nm and then continues the linearization of fo for the states in em.

4.2.5 Merging

The dual of splitting sets of states into subsets is merging several sets of states into a larger set.

Recall the driver for ∆Execution from Figure 4.1. It merges all non-visited states from one iteration

into a ∆State to be used at the start of the next iteration. Specifically, the merge method receives

as the input a ∆State and (implicitly) a statemask. This method extracts the non-visited states

from the ∆State and only stores their linearized representations. The method newIteration builds

and returns a new ∆State from the stored linearized representations.

Our merging uses delinearization to construct a ∆State from the linearized representations of

non-visited states. The standard delinearization is an inverse of linearization: given one linearized

representation, delinearization builds one heap isomorphic to the heap that was originally linearized.

The novelty of our merging is that it operates on a set of linearized representations simultaneously

and, instead of building a set of standard heaps, it builds one ∆State that encodes all the heaps.

It is interesting to point out that we often used in debugging our implementation the fact that

linearization and delinearization are inverses; the composition of these functions gives the identity

function: for any set of linearizations s, the linearization of the delinearization of s should equal s.

We highlight two important aspects of the merging algorithm. First, it identifies ∆Objects that

should be constants (with respect to the reachability of the nodes), which results in a more efficient

∆State. Such constants can occur quite often; for instance, in our experiments (see Section 4.4),
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the lowest percentage of the constant ∆Objects in the merged ∆States is 33%. Second, the merging

algorithm greedily shares the objects in the resulting ∆State: it attempts to share the same ∆Object

among as many individual states as possible. For example, in Figure 4.3, the left node from the

root is shared among three of the five states.

Figure 4.9 shows the pseudo-code of our merging algorithm. The input is a collection of lin-

earizations, and the output is a root object for a ∆State. The algorithm maintains a collection

of maps from object ids to actual objects (which handles aliasing) and a collection of offsets that

track progress through the different linearizations (since they do not need to go in a “lockstep”).

The method createObject constructs one object shared for all states in the given statemask and

invokes createDeltaObject to construct each field of the object. Note that this sharing does not

constitute aliasing in the standard semantics since: only one reference is visible for any given state.

The method createDeltaObject examines the field values across all states in the statemask sm.

For each state, it checks for three possible options for the field’s object id: (i) it denotes the null

reference, (ii) it denotes an alias, or (iii) it denotes a new object. For the first two options, the

algorithm assigns the value to the delta object d as it performs the check. For the third option, it

just records in the state mask object cm the index of the state during the check. If the smask cm is

not empty after the check across all states, the algorithm recursively invokes (once) createObject

to create an object that will be shared among the states in cm. Lastly, the algorithm checks if the

delta object d is semantically a constant, i.e., if it contains the same value across all states denoted

by sm. A special constant object is created in that case.

For states that have aliases between objects (unlike binary search tree), this greedy algorithm

does not always produce a ∆State with the smallest number of nodes, and some alternative al-

gorithms could produce smaller graphs. Figure 4.10 illustrates an example where an alternative

merging algorithm could find more sharing. Given the two states at the top, our greedy algorithm

produces the ∆State at the bottom-left that does not share the two subgraphs denoted by shaded

triangles. In contrast, a more complex algorithm could potentially identify this sharing opportunity

and construct the ∆State at the bottom-right. However, such alternative algorithms would require

more time to search for appropriate sharing opportunities that result in smaller ∆States.
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Seq[] lin; // input

Map<int, Object>[] maps; // intermediate result, mutable

int[] offsets; // intermediate result, mutable

Object merge() {

maps = new Map[lin.length](); // all empty maps

offsets = new int[lin.length]; // all zeroes

// the state mask starts as the set {0..lin.length-1}

return createObject(new StateMask(lin.length));

}

Object createObject(StateMask sm) {

Object o = new Object();

foreach (int index : sm) {

int id = lin[index][offsets[index]++];

maps[index].put(id, o);

}

foreach (field f in o) o.f = createDeltaObject(sm);

return o;

}

DeltaObject createDeltaObject(StateMask sm) {

DeltaObject d = new DeltaObject(lin.length);

// state indexes for which to create a new object

StateMask cm = new StateMask();

foreach (int index : sm) {

int id = lin[index][offsets[index]++];

if (id == NULL) d.values[index] = null;

else if (maps[index].contains(id))

d.values[index] = maps[index].get(id);

else { // need to create a new object for this id

cm.add(index); offsets[index]--; }

}

if (cm not empty) {

// key: greedily sharing the new object across indexes

Object co = createObject(cm);

foreach (int index : cm) d.values[index] = co;

}

// optimization for constants

if (d.values is constant with respect to sm)

d = new DeltaObjectConstant(d.values[some index from sm]);

return d;

}

Figure 4.9: Pseudo-code of the merging algorithm.

4.3 Implementation

We implemented ∆Execution in two model checkers, JPF and BOX. JPF [VHB+03] is a popular

model checker for Java programs, but it is general-purpose and has a high overhead [dSM06] for

the subject programs considered in our study and related studies [VPP05,VPP06,dSM06]. For the

purpose of evaluating the technique under different implementations, we also implemented BOX

(Bounded Object eXploration), a model checker specialized for sequential programs.
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Figure 4.10: Greedy vs. alternative merging.

4.3.1 JPF

We implemented ∆Execution by modifying JPF version 4 [jpf]. JPF is implemented as a backtrack-

able Java Virtual Machine (JVM) running on top of a regular, host JVM. JPF provides operations

for state-space exploration: storing states, restoring them during backtracking, and comparing

them. By default, JPF compares the entire JVM state that consists of the heap, stack (for each

thread), and class-info area (that is mostly static but can be modified due to the dynamic class load-

ing in Java). However, our experiments require only the part of the heap reachable from the root

object in the driver. We therefore disabled the JPF’s default state comparison and instead use a

specialized state comparison as done in some previous studies with JPF [XMSN05,VPP06,dPX+06].

We next discuss how we implemented each component of ∆Execution in JPF. We call the

resulting system ∆JPF. ∆JPF keeps ∆State as a part of the JPF state, which enables the use of

JPF backtracking to restore ∆State at the split points. We implemented the library operations on

∆State (such as arithmetic and relational operations or field reads and writes) to execute on the
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host JVM. Effectively, the library forms an extension of JPF; our goal is not to model check the

library itself but the subject code that uses the library. ∆JPF uses instrumented code to invoke

the operations that manipulate the ∆State.

We implemented splitting in ∆JPF on top of the existing non-deterministic choices in JPF. It

is important to point out that our implementation leverages JPF to restore the entire ∆State but

uses statemasks to indicate the active states. Therefore, ∆JPF manages statemasks on the host

JVM, outside of the backtracked state. We implemented merging also to execute on the host JVM

and to create one ∆State as a JPF state that encodes all the non-visited states encountered in the

previous iteration of the exploration. Recall that the drivers in our experiments use breadth-first

exploration.

To automate the instrumentation of code for execution on ∆JPF, we developed a plug-in for

Eclipse version 3.2 [Ecl]. This plug-in takes a subject program and manipulates its Eclipse internal

AST representation to automate the steps described in Section 4.2.3.

4.3.2 BOX

We developed BOX, a model checker optimized for sequential Java programs. JPF is a general-

purpose model checker for Java that can handle concurrent code and can store, restore, and compare

the entire JVM state that consists of heap, stack, and class-info area. However, in unit testing of

object-oriented programs, most code is sequential and most drivers need to store, restore, and

compare only the heap part of the state. Therefore, we used the existing ideas from state-space

exploration research [God97,VHB+03,Ios01,Fou,CDH+00,RDH03,MPC+02,AQR+04] to engineer

a high-performance model checker for such cases.

BOX can store/restore/compare only a part of the program heap reachable from a given root.

The root corresponds to the main object under exploration in the driver. BOX uses a stateful ex-

ploration (by restoring the entire state) across iterations and stateless exploration (by re-executing

one method at a time) within one iteration. BOX needs to re-execute a method within an iteration

as it does not store the state of the program stack. Instead, BOX only keeps a list of changes

performed on the heap during a single method execution and restores the state by undoing those

changes. For efficient manipulation of the changes, BOX requires that code under exploration be
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instrumented.

We refer to the ∆Execution implementation in BOX as ∆BOX. ∆BOX needs to backtrack

the ∆State in order to explore a method for various statemasks. ∆BOX re-executes the method

from the beginning to reach the latest split point. While re-execution is seemingly slow, it can

actually work extremely well in many situations. For example, Verisoft [God97] is a well-known

model checker that effectively employs re-execution.

∆BOX implements the components of ∆Execution as presented in Section 4.2. ∆BOX repre-

sents ∆State as a regular Java state that contains both ∆Objects and objects of the instrumented

classes. Our instrumentation for ∆BOX (as well as for BOX) is mostly manual at this time.

∆BOX uses instrumented code to perform the operations on the ∆State. Similarly to ∆JPF,

∆BOX merges states between iterations of the breadth-first exploration. ∆BOX always employs

the optimized state comparison as presented in Section 4.2.4.

4.4 Evaluation

We present an experimental evaluation of ∆Execution. We first describe the ten basic subject

programs used in the evaluation and then discuss the improvements that ∆Execution provides

for an exhaustive exploration of these programs in both JPF and BOX and a non-exhaustive

exploration in JPF. We finally present the improvements that ∆Execution provides on a larger

case study, an implementation of the AODV routing protocol [PR99].

We performed all experiments on a Pentium 4 3.4GHz workstation running under RedHat

Enterprise Linux 4. We used Sun’s JVM 1.5.0 07, limiting each run to 1.8GB of memory and

1 hour of elapsed time.

4.4.1 Basic subjects

We evaluated ∆Execution on ten subject programs taken from a variety of sources. All but one of

these subjects have been previously used to evaluate testing and model-checking techniques. The

following nine subjects are data structures:

• binheap is an implementation of priority queues using binomial heaps [VPP06]
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• bst is our running example that implements a set using binary search trees [BKM02,XMSN05]

• deque is our implementation of a double-ended queue using doubly-linked lists

• fibheap is an implementation of priority queues using Fibonacci heaps [VPP06]

• heaparray is an array-based implementation of priority queues [BKM02,XMSN05]

• queue is an object queue implemented using two stacks [DB06]

• stack is an object stack [DB06]

• treemap is an implementation of maps using red-black trees based on Java collection 1.4 [BKM02,

XMSN05,VPP06]

• ubstack is an array-based implementation of a stack bounded in size, storing integers without

repetition [SLA02,XMN04,CS04,PE05]

The tenth subject is filesystem, which is based on the Daisy file-system code [Qad]. While the

original code had seeded errors, we use a corrected version provided by Darga and Boyapati and

used in another study [DB06]. The primary purpose of our evaluation is to compare the efficiency of

∆Execution and standard execution, so we use correct implementations of all basic subjects. (The

AODV case study described in Section 4.4.4 uses code with errors that violate a safety property.)

For each subject, we wrote drivers for standard execution and for ∆Execution (similar to

figures 1.4 and 4.1). The drivers exercise the main mutator methods. For data structures, the

drivers add and remove elements. For filesystem, the drivers create and remove directories, create

and remove files, and write to and read from files.

4.4.2 Exhaustive exploration

Table 4.1 shows the experimental results for exhaustive exploration. For each subject and several

bounds (on the sequence length and parameter size, as in the driver shown in Figure 4.1), we

tabulate the overall exploration time and peak memory use with and without ∆Execution in both

JPF and BOX, and the characteristics of the explored state spaces. The cells marked with “*”

indicates that the experiment either ran out of 1.8GB memory or exceeded the 1 hour time limit.
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experiment JPF time JPF mem. # states # executions

subject N std delta std/delta std/delta std delta std/delta

7 24.87 2.30 10.82x 1.16x 16864 236096 401 588
binheap 8 458.81 11.92 38.50x 1.03x 250083 4001328 863 4636

9 * * * * 1353196 24357528 1069 22785

9 44.02 7.86 5.60x 0.70x 46960 845280 10846 77
bst 10 214.06 30.13 7.11x 0.46x 206395 4127900 22688 181

11 * * * * 915641 20144102 46731 431

8 54.70 4.13 13.25x 1.50x 69281 1108496 576 1924
deque 9 552.11 28.84 19.14x 1.48x 623530 11223540 810 13856

10 * * * * 6235301 124706020 1100 113369

6 3.18 1.46 2.17x 0.98x 3003 21021 82 256
fibheap 7 25.09 2.82 8.90x 2.13x 36730 293840 130 2260

8 400.84 21.59 18.57x 0.88x 544659 4901931 209 23454

3 1.98 1.88 1.06x 0.97x 58 6264 576 10
filesystem 4 17.18 3.08 5.59x 11.50x 1353 194832 1568 124

5 * * * * 64576 11623680 3940 2950

8 104.96 3.61 29.09x 2.31x 97092 873828 258 3386
heaparray 9 2,724.63 21.49 126.80x 1.22x 804809 8048090 359 22418

10 * * * * 8722946 95952406 488 196623

6 6.46 1.46 4.42x 2.64x 10057 70399 45 1564
queue 7 84.42 5.08 16.63x 1.77x 147995 1183960 60 19732

8 * * * * 2578641 23207769 77 301399

6 5.00 1.41 3.55x 1.01x 9331 65317 42 1555
stack 7 59.70 4.14 14.43x 1.31x 137257 1098056 56 19608

8 * * * * 2396745 21570705 72 299593

12 274.26 53.40 5.14x 3.44x 96401 2313624 7774 297
treemap 13 871.16 160.75 5.42x 3.90x 282532 7345832 11105 661

14 2,860.23 562.70 5.08x 4.41x 844655 23650340 15178 1558

8 61.52 4.60 13.37x 1.57x 109681 987129 595 1659
ubstack 9 1,502.24 32.54 46.17x 1.48x 991189 9911890 931 10646

10 * * * * 9922641 109149051 1414 77191

Table 4.1: Overall time and memory for exhaustive exploration, using ∆Execution in JPF, and
characteristics of the explored state spaces. We use the symbol * to indicate that an experiment
either run out of memory or time (1h). Second is the unit of time.

The columns labeled “std/delta” show the improvements that ∆Execution provides over stan-

dard execution. Note that the numbers are ratios and not percentages; for example, for binheap and

N = 7, the ratio is 10.82x, which corresponds to about 90% improvement (= (1 − 1/ratio) ∗ 100).

For JPF, the speedup ranges from 0.88x (for aodv and N = 6) to 126.80x (for aodv and N = 10),

with median 5.60x. For BOX, the speedup ranges from 0.58x (for fibheap and N = 8, which

actually represents almost a 2x slowdown) to 4.16x (for fibheap and N = 8), with median 2.23x.

Note that the ratio less than 1x means that ∆Execution ran slower (or required more memory)

than standard execution, for example for filesystem and N = 3 in BOX. While this can happen for

smaller bounds, ∆Execution consistently runs faster than standard execution for important cases

with larger bounds.
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experiment BOX time BOX mem.
subject N std delta std/delta std/delta

7 0.78 0.35 2.23x 2.71x
binheap 8 11.63 3.38 3.44x 1.08x

9 106.54 32.74 3.25x 1.04x
9 2.42 1.53 1.59x 0.77x

bst 10 12.55 7.51 1.67x 0.30x
11 67.64 49.62 1.36x 0.18x
8 2.20 0.77 2.86x 1.54x

deque 9 22.38 7.48 2.99x 1.14x
10 281.84 99.77 2.82x 1.18x
6 0.22 0.16 1.40x -

fibheap 7 1.16 0.66 1.76x 1.24x
8 16.77 9.75 1.72x 0.68x
3 0.14 0.25 0.58x -

filesystem 4 1.18 0.71 1.67x 1.72x
5 37.43 30.04 1.25x 0.97x
8 1.21 0.88 1.37x 1.24x

heaparray 9 11.92 8.91 1.34x 0.53x
10 127.10 110.26 1.15x 0.58x
6 0.37 0.16 2.25x -

queue 7 3.87 0.93 4.16x 1.44x
8 78.62 25.36 3.10x 1.00x
6 0.31 0.12 2.55x -

stack 7 2.92 0.71 4.09x 1.87x
8 59.98 17.81 3.37x 1.31x
12 32.88 9.12 3.61x 1.34x

treemap 13 102.85 29.02 3.54x 1.48x
14 365.54 104.09 3.51x 2.48x
8 2.26 1.28 1.77x 1.30x

ubstack 9 22.60 13.52 1.67x 0.66x
10 265.49 174.96 1.52x 0.62x

Table 4.2: Overall time and memory for exhaustive exploration in BOX. The characteristics of the
state space appears in Table 4.1. We use the symbol - to indicate that the measurement of memory
is not reliable due to the short run. Second is the unit of time.

∆Execution provides these significant improvements because it exploits the overlap among ex-

ecutions in the state-space exploration. Table 4.1 shows the information about the state spaces

explored in the experiments. Note that the number of explored states is the same with and without

∆Execution. This is as expected: ∆Execution focuses on improving the exploration time and does

not change the exploration itself. (We used the difference in the number of states to debug our im-

plementations of ∆Execution.) However, the numbers of executions with and without ∆Execution

do differ, and the column labeled “std/delta” under the group “#executions” shows the ratio of

the numbers of executions. The ratio ranges from 10x to 301399x. While this ratio effectively
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experiment standard execution time ∆Execution time
subject N exec. comp. backt. exec. comp. backt. merg.

binheap 7 17.62 0.54 6.71 0.59 0.26 1.12 0.34
8 364.45 4.90 89.46 3.99 2.21 1.24 4.48

bst 9 20.44 4.20 19.39 2.25 2.40 1.94 1.27
10 103.39 21.04 89.62 7.18 12.85 3.98 6.12

deque 8 25.50 3.45 25.75 0.72 1.08 1.18 1.14
9 267.42 38.31 246.38 6.37 12.19 1.26 9.02
6 1.25 0.11 1.81 0.18 0.08 1.08 0.13

fibheap 7 14.69 0.86 9.53 0.42 0.31 1.20 0.89
8 256.79 8.02 136.03 4.07 4.49 1.41 11.63

filesystem 3 0.24 0.05 1.69 0.20 0.15 1.46 0.07
4 4.67 0.46 12.04 0.60 0.69 1.59 0.20

heaparray 8 15.10 1.72 88.13 1.10 0.38 1.13 1.00
9 160.36 17.38 2,546.90 8.85 4.40 1.36 6.87

queue 6 3.07 0.15 3.24 0.04 0.07 1.11 0.24
7 48.30 1.52 34.60 0.18 0.70 1.10 3.09

stack 6 1.77 0.10 3.13 0.02 0.06 1.13 0.20
7 28.38 1.85 29.46 0.02 0.49 1.18 2.44

treemap 12 191.51 26.06 56.70 5.05 43.52 2.00 2.83
13 622.58 81.12 167.46 13.11 137.08 2.10 8.46
14 2,031.64 283.39 545.19 38.45 494.99 2.47 26.78

ubstack 8 31.95 2.58 26.99 1.34 0.97 1.13 1.15
9 357.06 30.19 1,114.99 14.09 9.06 1.37 8.02

Table 4.3: Time breakdown for JPF experiments.

enables ∆Execution to provide the speedup, there is no strict correlation between the ratio and

the speedup. The overall exploration time depends on several factors, including the number of

execution paths, the number of splits, the cost to execute one path, the frequency of constants in

∆States, and the sharing of execution prefixes.

Time

We next discuss in more detail where state-space exploration spends time. In particular, where

∆Execution reduces time. Each state-space exploration, standard and ∆, includes three compo-

nents: (i) execution, (ii) path exploration, and (iii) path pruning. ∆Execution additionally includes

(iv) merging. As we discuss in Section 2.5, we use the terms backtracking and state comparison to

refer to path exploration and path pruning, respectively. Table 4.1 and 4.4 show the breakdown of

the overall exploration time on these four components for JPF and BOX. We show the numbers

for only some of the experiments (for subjects from Section 4.4.3); the conclusions are the same for

the other experiments.
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In JPF, ∆Execution significantly reduces the time for code execution and state backtracking.

For example, for binheap and N = 7, ∆Execution reduces the execution time from 17.62s to 0.59s

and the backtracking time from 6.71s to 1.12s. These savings are big enough and make the times

for merging and state comparison irrelevant. (For this exploration, ∆JPF does not even use the

optimized state comparison, from section 4.2.4.) As mentioned earlier, JPF is a general-purpose

model checker that stores and restores the entire Java states and thus has a high execution and

backtracking overhead.

In BOX, ∆Execution sometimes results in a higher code execution time, yet has a smaller overall

exploration time. The reason is that ∆Execution achieves significant savings in the state comparison

using the optimized algorithm from Section 4.2.4. For example, for bst and N = 11, ∆Execution

increases the execution time from 3.26s to 7.96s. However, it reduces the state comparison time

from 57.19s to 20.35s, which more than makes up for the longer execution time. Note that the

number of states and state comparisons is the same in both standard execution and ∆Execution,

but the optimized state comparison is only possible for ∆Execution. Indeed, it is the execution on

∆States that enables the simultaneous comparison of a set of states.

Memory

Tables 4.3 and 4.4 also provide a comparison of memory usage. Specifically, the columns labeled

“mem. std/delta” show the ratio of peak memory usage for standard execution versus ∆Execution.

Our setup uses the Sun’s jstat [Sun] monitoring tool to record the peak usage of garbage-collected

heap in the JVM running an experiment. Although this particular measurement does not include

the entire memory used by the JVM process, it does represent the most relevant amount used by

a model checker. (The cells marked “-” represent experiments where the running time is so short

that jstat does not provide accurate memory usage.)

For JPF, standard execution uses more memory than ∆Execution for most experiments. The

results show that ∆Execution reduces memory use from 0.46x to 11.50x (with median 1.48x).

Note that ∆Execution occasionally uses more memory, for example for bst. In BOX, ∆Execution

reduces memory from 0.18x to 2.71x (with median 1.18x). Note that the median of memory use

in BOX has a lower value indicating that ∆Execution consumes more memory (relative to the
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experiment standard execution time ∆Execution time
subject N exec. comp. backt. exec. comp. backt. merg.

7 0.22 0.37 0.12 0.10 0.13 0.00 0.06
binheap 8 4.57 3.74 2.78 1.01 1.43 0.01 0.87

9 21.46 67.74 15.03 4.70 21.77 0.01 6.27
9 0.23 1.90 0.18 0.47 0.73 0.01 0.29

bst 10 0.52 10.60 0.91 1.78 3.78 0.01 1.86
11 3.26 57.19 4.42 7.96 20.35 0.02 21.14
8 0.32 1.50 0.33 0.15 0.39 0.00 0.19

deque 9 2.30 16.26 3.17 1.36 4.46 0.00 1.57
10 21.95 214.30 31.48 16.48 59.01 0.01 23.87
6 0.06 0.08 0.03 0.05 0.04 0.00 0.03

fibheap 7 0.31 0.51 0.29 0.21 0.24 0.00 0.18
8 4.70 7.94 3.90 2.77 3.76 0.00 3.18
3 0.02 0.09 0.01 0.04 0.06 0.00 0.03

filesystem 4 0.06 0.99 0.06 0.16 0.38 0.01 0.06
5 3.30 30.35 1.70 16.74 10.45 0.02 2.59
8 0.12 0.88 0.12 0.38 0.35 0.00 0.10

heaparray 9 1.17 9.25 1.06 3.73 4.05 0.00 1.03
10 11.47 98.01 10.46 44.85 46.36 0.01 18.52
6 0.05 0.19 0.10 0.03 0.05 0.00 0.04

queue 7 0.80 1.85 1.09 0.07 0.45 0.00 0.39
8 13.71 42.80 21.38 0.94 9.77 0.00 14.57
6 0.04 0.16 0.08 0.02 0.04 0.00 0.03

stack 7 0.40 1.54 0.94 0.02 0.34 0.00 0.29
8 7.04 34.77 16.58 0.02 7.54 0.00 10.21
12 1.44 29.60 1.26 1.55 6.74 0.02 0.66

treemap 13 4.23 94.53 4.05 4.39 22.04 0.02 2.42
14 13.48 333.97 13.08 13.43 81.55 0.04 9.13
8 0.22 1.68 0.24 0.36 0.70 0.00 0.16

ubstack 9 2.64 16.96 1.62 3.94 7.96 0.00 1.54
10 33.77 203.66 16.28 50.82 100.10 0.00 22.12

Table 4.4: Time breakdown for BOX experiments.

standard execution). This is justified by the fact that the ∆Execution implementation in JPF

uses native states in some parts. For these parts, memory management is done by the base-level

JVM. In constrast, in standard execution, only one JVM – the JPF’s JVM – handles the memory

management.

Many factors, already mentioned for exploration time, can influence the memory usage, but

an important factor seems to be the number of constant ∆Objects in the merged state, i.e., the

∆State. ∆Execution uses these objects to represent values that are the same across all states in

a ∆State. To conduct this experiment, we calculate the percentage, across all iterations, of the

number of objects on the merged state that are actually constant. For example, if we run an

experiment for 2 iterations and find x1 constants out of y1 delta objects in the first iteration and
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experiment standard execution ∆Execution ratio
subject N #states #exec. tot.time #states #exec. tot.time tot. impr.

28 28 15680 4.33 28 956 4.12 1.05x
binheap 29 29 16820 4.42 29 958 4.16 1.06x

30 30 18000 4.58 30 1040 4.27 1.07x
20 166064 10168360 549.85 150192 49645 90.86 6.05x

bst 21 381535 22466178 1,237.36 416946 77951 246.28 5.02x
22 677848 43605496 2,389.23 626555 83569 380.42 6.28x
28 881 182323 18.68 1041 7810 20.40 0.92x

fibheap 29 961 184320 19.15 1157 7269 20.35 0.94x
30 1144 289571 28.68 1354 10981 28.56 1.00x
20 11879 1492080 195.50 11952 39131 43.28 4.52x

treemap 21 22455 2893212 385.33 20590 48974 65.82 5.85x
22 38126 4918100 661.17 36550 59693 107.33 6.16x

Table 4.5: Overall time for non-exhaustive exploration.

x2 out of y2 in the second, we report (y1 + y2 − x1 − x2)/(y1 + y2) as the percentage of constants.

It is important to mention that this measurement of constant is different than the one reported on

Figure 4.2. This measure reflects more precisely the use of memory, while the other, appearing in

the charts from Figure 4.2, illustrates better the appearance of constants during execution.

We found that there is a relatively strong positive correlation between the percentage of constant

∆Objects and the memory ratio for an experiment. For example, bst and N = 11 has a poor

memory ratio, and the percentage of constant objects in ∆States is 33%, the lowest of all subjects.

For treemap and N = 12, on the other hand, ∆Execution uses less memory than standard execution,

and the percentage of constant objects is 69%. These percentages are computed across the entire

exploration: it is the percentage of constant delta objects produced during merging from the total

number of delta objects produced.

4.4.3 Non-exhaustive exploration

We next evaluate ∆Execution for a different state-space exploration. While exhaustive exploration

is the most commonly used, there are several others such as random [PE05, CS04] or symbolic

execution [KPV03, XMSN05, dPX+06]. Recently, Visser et al. [VPP06] have proposed abstract

matching, a technique for non-exhaustive state-space exploration of data structures. The main

idea of abstract matching is to compare states based on their shape abstraction: two states that

have the same shape are considered equivalent even if they have different values in nodes. For

example, all binary search trees of size one are considered equivalent. The exploration is pruned
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whenever it reaches a state equivalent to some previously explored state, which means that abstract

matching can miss some portions of the state space.

We chose to evaluate ∆Execution for abstract matching because the JPF experiments done by

Visser et al. [VPP06] showed that abstract matching achieves better code coverage than five other

exploration techniques, including exhaustive exploration, random, and symbolic execution. (The

experiments did not consider whether higher code coverage results in finding more bugs.) Our

evaluation uses the same four subjects used to evaluate abstract matching in JPF: binheap, bst,

fibheap, and treemap. We ran each subject for sequence bound up to N = 30 (as done in [VPP06])

or until the experiment timed out of 1 hour. We used the same drivers as for exhaustive exploration

but randomized the order of non-deterministic choices in getInt and used 10 different random

seeds; Visser et al. use the same experimental setup to minimize the bias that a fixed order of

method/value choices could have when combined with abstract matching.

Table 4.5 shows the results for abstract matching with and without ∆Execution. ∆Execution

significantly reduces the overall exploration time for two subjects (bst and treemap) and slightly

reduces or increases the time for the other two subjects (binheap and fibheap). ∆Execution provides

a smaller speedup for the bounds explored for abstract matching (Figure 4.5) than for the bounds

explored for exhaustive exploration (figures 4.1 and 4.2). This can be attributed to the reduced

number of states and executions in abstract matching compared to exhaustive exploration. For

example, for bintree, abstract matching for N = 20 explores fewer states and executions (166,064

and 10,168,360, respectively) than exhaustive exploration for N = 11 (915,641 and 20,144,102).

In addition, there is less similarity across states and executions in abstract matching than in

exhaustive exploration. Indeed, abstract matching selects the states such that they differ in shape.

(The peculiarity of binheap is that it has only one possible shape for any given size.)

Note that abstract matching can explore a different number of states and executions with and

without ∆Execution. The reason is that standard execution and ∆Execution explore the states in

a different order: while standard execution explores each state index in order, ∆Execution explores

at once various subsets of state indexes based on the splits during the execution. Thus, these

executions can encounter in different order states that have the same shape, and only the first

encountered of those states gets explored. The randomization of non-deterministic method/value
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choices, which is necessary for abstract matching, also minimizes the effect that different orders

could introduce for ∆Execution and standard execution. As Figure 4.5 shows, ∆Execution can

explore more states (for example for bst and N = 21) or fewer states (for example for bst and

N = 20) than standard execution, but ∆Execution speeds up exploration whenever the shapes

have similarities.

4.4.4 AODV case study

We also evaluated ∆Execution on a larger application, namely the implementation of the Ad-Hoc

On-Demand Distance Vector (AODV) routing protocol [PR99] in the J-Sim network simulator [J-

S]. This application was previously used to evaluate a J-Sim model checker [SVMH05] and Mixed

execution as discussed in Chapter 3.

AODV is a routing protocol for ad-hoc wireless networks. Each of the nodes in the network

contains a routing table that describes where a message should be delivered next, depending on

the target. The safety property we check in this study expresses that all routes from a source to

a destination should be free of cycles, i.e., not have the same node appear more than once in the

route [SVMH05].

The implementation of AODV, including the J-Sim library classes that it depends on, consists

of 43 classes with over 3500 non-blank, non-comment lines of code. We instrumented this code

using the Eclipse plug-in that automates instrumentation for ∆Execution on JPF. The resulting

instrumented code consisted of 143 classes with over 9500 lines of code. We did not try this case

study in BOX since it currently requires much more manual work for instrumentation.

We used for this case study the driver previously developed for AODV [SVMH05]. Like the

bst driver shown in Figure 4.1, the AODV driver invokes various methods that simulate protocol

actions (sending messages, receiving messages, dropping messages etc.). Unlike the bst driver, the

AODV driver (i) includes guards that ensure that an action is taken only if its preconditions are

satisfied and (ii) includes a procedure that checks whether the resulting protocol state satisfies

the safety property described above. Section 2.7 discusses the AODV protocol in more detail and

Section 3.4.3 describes the events and their guards used in the AODV driver. In this experiment,

when a violation is encountered, the driver prunes that state/path but continues the exploration.
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experiment JPF time JPF mem. # states
subject N std delta std/delta std/delta

6 6.87 7.81 0.88x 0.53 1061
7 21.44 16.97 1.26x 0.56 3796

aodv 8 74.31 43.10 1.72x 0.52 13195
9 262.20 128.60 2.04x 0.58 44735
10 926.60 485.14 1.91x 0.51 147805

Table 4.6: Exploration of AODV in JPF.

experiment standard execution time ∆Execution time
subject N exec. comp. backt. exec. comp. backt. merg.

6 3.21 0.20 3.46 4.82 0.54 1.93 0.53
7 11.48 0.64 9.32 11.79 1.96 2.28 0.94

aodv 8 41.72 2.47 30.11 29.57 7.76 3.39 2.38
9 148.06 9.51 104.63 85.88 29.68 6.00 7.04
10 522.49 36.18 367.92 337.67 110.65 14.46 22.36

Table 4.7: Breakdown of the exploration time for AODV in JPF.

We ran experiments on three variations of the AODV implementation, each containing an

error that leads to a violation of the safety property [SVMH05]. Table 4.6 shows the results of

experiments on one variation. Since the property was first violated in the ninth iteration for all

three variations, the results for the other two variations were similar, and we do not present them

here. It is important to point out that we continue the exploration after encountering a bad state.

Table 4.7 shows the breakdown of time for the AODV experiments that appears on Table 4.6.

Note that the bulk of the time in ∆Execution goes to the execution operation. The next section

elaborates on how the technique can improve the overall time ratio of the AODV experiment.

Optimizations

We implemented two optimizations in the evaluation of AODV. The first takes advantage of pre

and post-conditions of methods that the driver for AODV uses to explore the AODV state. The

second takes advantage of domain-specific knowledge about AODV: some data-structures on the

AODV state are semantically a set. For example, it does not matter in which order a routing tables

for an AODV node stores its entries. Below, we provide more detail about these optimizations.

More efficient exploration. We realized that the model checker exercised an AODV tran-

sition (say, a message loss) more than once in a given iteration of the ∆-driver. That happens

because the evaluation of the pre-condition splits execution. As result, the model checker executes
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the same transition separately with different state masks; reducing the potential of ∆Execution

to take advantage of the similarity across states and paths. A similar scenario affects the evalu-

ation of the post-condition: the execution of transition splits the state (masks). To improve the

exploration we changed the driver to evaluate the pre-condition (respectively, post-condition) in

breadth-first order and to merge the state masks at the end of the evaluation. This way the model

checker executes a transition only once (in a given iteration) against all states that evaluate the

pre-condition to true.

Domain-specific knowledge. We realized that some of the data-structures that the AODV

implementation uses are conceptually sets implemented with lists. As result, the model checker can

explore more states than it needs. For instance, the model checker will render two states different

even if they only differ in the order of the elements in these lists. We realized that the routing

table is one of such cases. We changed the implementation to keep the routing tables sorted. This

resulted in less states explored in both standard and ∆Execution.

4.5 Limitations and Future Work

We now list the limitations of ∆Execution (and its current implementation) as well as plans for

future work.

Supporting merging in different program points. ∆Execution currently supports only

merge of state at the boundaries of method calls. The model checker uses a test driver to perform

bounded-exhaustive exploration and merge all new states that execution creates during one itera-

tion. This scenario enables our implementation to merge only the state of the subject under test.

We did not evaluate how effective merging in different program points would be to increase shar-

ing and improve ∆Execution. For example, one could decide to merge states after executing two

different conditional branches in separate. (This is similar to the application of a join in abstract

interpretation [CC77].) In principle, it is possible to merge state at any program point but that

requires creating more deltas of state. For example, if ∆Execution merges state when the program

stack is not empty, it needs to create delta state for the program stack.

∆Execution with different search strategies. Currently, ∆Execution works with a breadth-

first search strategy. In principle, the model checker can apply ∆Execution with other search
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strategies. Like the application for the verification of concurrent programs, this extension also

requires merging state at arbitrary points. For example, the model checker can merge state in a

depth-first search after a fixed number of non-deterministic choices. It remains to investigate how

∆Execution can operate with different search strategies. In particular, how these changes could

impact usage of constants and ultimately the benefit of ∆Execution.

DeltaExecution with non-primitive inputs and with sets of inputs. Currently, the

methods the bounded-exhaustive exploration exercises in our experiments either do not take non-

primitive arguments or take non-primitive values that requires only a primitive for their construc-

tion (e.g., java.lang.Integer object). We consider the construction of non-primitive input values

as an orthogonal problem.

Our scenario of exploration currently represents the state of the receiver with a ∆Object (i.e., a

set of heaps), but it passes single values as arguments to the method call. An alternative to this is

to pass sets of values as argument. This would potentially increase the overlapping in ∆Execution:

it could be possible that several (individual) executions take the same path for different input

arguments. Note, however, that this would require ∆Execution to support cartesian products. The

state indices of the ∆State of the receiver argument does not relate to the state indices of the input

arguments. This alternative shows a tradeoff between space and time efficiency in program model

checking. More specifically, a tradeoff between memory and time efficiency in ∆Execution.

∆Execution for concurrent programs. We want to investigate the application of ∆Execution

for model checking concurrent programs. This application will require to represent more parts of

the state as deltas. In particular, it would require to create deltas for the program stack and the

synchronization monitors. In this application, there is no restriction on where the scheduler will

preempt execution of one thread. Therefore, it needs to represent the differences on the state of

the program stack. In addition, the different interleaving of the program can result in different

states of the synchronization monitors.

∆Execution for path validation and regression testing. The key idea of ∆Execution is

to share the commonalities between different program executions. We use the technique to perform

bounded-exhaustive exploration with the goal of optimizing time of explicit-state model checkers.

We have been investigating the use of ∆Execution in a different scenario, a scenario with fewer paths
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and states. In this scenario, we run different versions of a program with the same initial state. The

goal is to speed up these executions. Execution creates deltas of states from the differences in the

program (or the subsequent deltas of state). We consider two applications that follow this scenario:

patch validation [ZMS+07] and regression testing [ECDD06]. In patch validation, ∆Execution

applies to one pair of program versions whose executions are long-running. In regression testing,

∆Execution applies to a pair of program versions whose executions are short-running. In either

case, the motivation is to “validate” the execution of the new version by comparing the state it

creates with the state the original version creates. The goal is to speed up the validation process.

∆Execution using other representation of (set of) state(s). We discussed in the in-

troduction the relationship between symbolic model checking [CGP99, JEK+90] and ∆Execution.

Symbolic model checking inspired ∆Execution. Conceptually, ∆Execution performs the same ex-

ploration. In contrast to traditional implementations of symbolic model checking, our implemen-

tation of ∆Execution handles states that involve heaps.

Symbolic model checking use BDDs as a data structure to implement boolean functions. BDDs

have been also used in program analysis [WL04,LH04] to represent analysis information as sets and

relations. In particular, to represent approximations of set of heaps. These techniques employ either

data [LH04] or control abstractions [WL04] to produce over-approximations of the set of reachable

program heaps. Such abstraction makes the analysis of programs with unbounded number of

heap states tractable. In contrast to these techniques, ∆Execution does not perform any form of

approximation in the state set. It runs the program and accumulates the actually reachable heaps.

We want to investigate other symbolic representations, such as BDDs, to represent sets of

concrete heaps in ∆Execution. We discuss next one possible approach. This approach partitions

a ∆State in two parts: the concrete part and the symbolic part. The concrete part includes only

the regular objects of the state. The symbolic part includes only the ∆Objects. For example, we

partition the ∆State appearing in Figure 4.3 in two. The fields of regular objects store symbolic

names to express that it can in fact refer to multiple values. BDDs, or other symbolic representation,

represent the state of ∆Objects. Note that we do not use indices to enumerate state.

Figure 4.11 shows an illustrative example of such encoding. It highlights some operations that

arise during ∆Execution. It shows first the merging of two trees. Then, it shows a split on a
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predicate that checks whether the left field of the tree is null. Following the split, the figure then

shows an assignment of null to the left field on one path and an assignment of the right field to

the left field on the second path.

In each step, the figure shows, for the sake of illustration, three distinct representations of state.

The first is the representation of an object graph similar to the one we currently use in ∆Execution.

The second represents state with a boolean formula. We use the literals NULL, a, b, and c to

denote memory locations. The third representation uses BDDs. Note that we require two booleans

to encode each of the heap variables x0, x1, x2, x3; we use z0 and z1 to encode x0, z2 and z3 to

encode x1, z4 and z5 to encode x2, and z6 and z7 to encode x3.

We use disjunction of boolean formulas to implement merging. BDDs [CGP99] can efficiently

implement disjunction, as well as any of the standard boolean operations. We use conjunction of

boolean formulas to implement splitting, i.e., we add a new formula to constrain the set of states

it represents. We model assignment also with conjunction but that requires introducing a new

variable. For example, we introduce a new variable x3 to hold the value of the assignment.

Note that this approach requires a large number of symbolic variables that execution can use.

Note also that execution can garbage collect parts of the state. For example, the post-state of

the execution that assigns null to the left field from root cannot reach the state referred to the

symbolic name x1. (Note that the boolean variables that encode x1 appear on the BDD.)

Whaley and Lam [WL04] show that it is possible to describe a variety of pointer analysis

algorithms using a declarative, relational language. They describe a system that can translate

programs in such language into efficient analyzers based on BDDs. In one of their examples, they

model the effect of variable assignment on the results of the analysis with a construction that

involves a combination of standard relational operations: projection, renaming, natural join, and

union. In contrast to our application, heap updates are not destructive: the analysis approximates

the solution iteratively; it typically does not remove tuples on the sets. The destructive update

was the reason for creating different names in the approach above.

We want to study other encodings of state with heaps and evaluate their use in ∆Execution.

We also want to investigate extensions of BDDs that support arrays natively or enables the efficient

encoding of arrays; the model checker can use arrays to represent execution state.
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Figure 4.11: Use of boolean functions to encode set of heaps. Each object graph appears with a
boolean formula and a BDD that encodes it. The top part of the figure shows two states of a tree
(with their different representations). The second part shows the merging of these two states. The
last two parts show a split followed by a field assignment.
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Chapter 5

Related Work

Traditional model checkers such as Murphi [DDHY92], SMV [McM93], and SPIN [Hol97] have

been extensively used in formal reasoning of both hardware and software systems. These tools

analyze models written in special modeling languages. To analyze a system, the user needs either

to manually write a model of the system in a language understood by the tools [BOG02] or to

automatically translate an implementation of the system from a programming language (e.g., Java)

into the modeling language of the tools [PSSD00, Hav99, CDH+00]. Our work considers model

checkers that directly analyze systems written in a programming language.

Software and hardware often produce models with infinite or finite but extremely large number

of states. The problem of models having large number of states is known as the state space

explosion problem. While state space explosion is a key issue in model checking, time efficiency

becomes more relevant with the increasing appearance of model checkers that operate on actual

code. State comparison and backtracking, which are two of the major operations in explicit-state

model checking of programs, become potentially slower: the state of an implementation model is

larger as it includes details not present in a design model (of the same system). In addition, a

deterministic step of the exploration is also potentially more expensive: a deterministic step of an

implementation model typically contains more state transitions than one in a design model (of the

same system).

We next discuss related work to this dissertation. We separate the body of related work in two

groups. The first group includes related work with similar goal – speed-up the state space explo-

ration of programs – and the second group includes related work that employs similar technique to

the ones discussed in this dissertation.

97



5.1 Work with similar goal

This section discusses related work that has similar goal with our techniques. We divide this section

in two groups. The first group includes techniques that target the reduction of space. The second

group includes techniques that target reduction of time.

5.1.1 Space-reduction techniques

A variety of techniques have been developed with focus on reduction of space, i.e., the reduction in

the size of the states and/or the number of transitions in the input model. They have been successful

in reducing the impact of the state space explosion problem and ultimately making model checking

more practical. Important to note is that such techniques can help to reduce the exploration time:

the model checker have less states to explore; it takes less time to execute transitions, backtrack,

and compare states. These techniques are orthogonal to the ones we described in this dissertation.

As such, it is possible to apply space-reduction techniques in conjunction with ours. In fact,

the evaluation of our techniques used some of these techniques: heap symmetry (in mixed and

∆Execution) and abstract matching (in ∆Execution).

Space-reduction techniques typically fall into two categories: those that apply some form of

abstraction in the input program prior to model checking and those that prune paths from the

state space.

Abstraction

This section discusses techniques that reduce the size of the model by performing some form of

abstraction. We call abstraction a transformation on the input model that produces another model

that is simpler to verify: the model checker may contain less information in states or less state

transitions.

Predicate abstraction [VPP00,BR00,BMMR01] is a technique that transforms general programs

into boolean programs which are amenable to efficient verification with BDDs. While predicate

abstraction has shown great results in many applications, it does not handle well complex data

structures and heaps. (See sections 2.3.1 and 4.5.) ∆Execution handles heaps efficiently. However,

∆Execution does not perform any abstraction on the input program that could potentially reduce
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space and time.

Program slicing [Wei81,HCD+99] is a technique for simplifying a program with respect to some

property of interest. It takes as input a program and a description of a property and produces

as output another program that must only include the dynamic behaviors of the original program

that affect the property of interest, i.e., it can remove the parts that cannot affect the property.

Applications of program slicing include software testing and debugging, e.g., a debugger can apply

program slicing to help the programmer focus her attention to only the parts of the program that

affect the error that she is trying to locate [ADS93]. Slicing can reduce the size of the model as it can

remove data from the state and state transitions not relevant for the checking [HCD+99,HDZ00].

We want to investigate the impact of mixed execution and ∆Execution on model checking of sliced

programs.

Path pruning (state comparison)

This section discusses techniques for path pruning, i.e., techniques that identify and eliminate

unnecessary program paths from the state space exploration.

Symmetry reduction is a space-reduction technique that exploits the fact that software compo-

nents often play similar roles in a system. The model checker can prune a path when it leads to

a state that is symmetric to one already visited. Thread symmetry [HJJJ85,CEFJ96,ES96, ID96]

is a special kind of symmetry that often occur in concurrent systems. For instance, consider the

usual dining philosophers problem [Dij71] with a fixed number of philosophers. The state in which

one philosopher, say i, eats and all other philosophers think is equivalent to the state in which

another philosopher j 6= i eats and all others, including philosopher i, think. Such two states are

symmetric since there is only one role for a philosopher in the algorithm. We say that the states

are equivalent under permutation of the process/philosopher ids. We want to apply symmetry

reduction for ∆Execution of concurrent programs.

Heap symmetry [MD05,LV01,CGP99,Ios01] is an important technique that model checkers use

to alleviate the state space explosion problem. A model checker uses heap symmetry to detect

equivalent states during the state space exploration: the model checker can prune a path when

it leads to a state equivalent to some already visited. In object-oriented programs, two heaps
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are equivalent if they are isomorphic (i.e., have the same structure and primitive values, while

their object identities can vary) [Ios01, MD05, BKM02]. An efficient way to compare states for

isomorphism is to use linearization (also known as serialization or marshalling) that translates a

heap into a sequence of integers such that two heaps are isomorphic if and only if their linearizations

are equal. It is important to note that the current implementation of ∆Execution applies heap

symmetry only to heaps with a single root.

Partial-order reduction [KP89,Val91,GS92,God96] is a space-reduction technique that model

checkers often apply to optimize verification of (concurrent) programs. The technique exploits

the commutativity of transitions in the model; some sequence of transitions can lead to the same

state when executed in different orders. For instance, assume transitions a and b commute (e.g.,

transitions a and b mutate different fragments of data in the program and there is no flow of data

between these fragments), and whenever the model checker explores a, it can explore b from the

post-state and vice versa. Then, it is possible to prune the paths from a followed by b without loss

of generality as the model checker explores the paths from b followed by a, which lead to the same

state. We want to apply partial-order reduction to improve state space exploration of programs.

Visser et al. [VPP06] recently proposed abstract matching, a non-exhaustive technique (see

Section 4.4.3) for state space exploration of dynamically-allocated data structures. The main idea

of abstract matching is to compare states based on their shape abstraction: the model checker

considers two states equivalent if they have the same shape; the model checker does not take

into account the values these states associate to primitive fields. For example, the model checker

with abstract matching considers as equivalent all binary search trees of size one. It prunes the

exploration path whenever it reaches a state equivalent to some previously explored state. Note that

the abstract matching can result in a more efficient exploration as the model checker misses portions

of the state space. We evaluated ∆Execution with abstract matching and realized a decrease in

the speedup when compared to ∆Execution without abstract matching. The relative decrease of

improvement in ∆Execution under this scenario is due to the fact that abstract matching reduces

the total number of states the model checker explores. (See details in Section 4.4.3.) We did not yet

apply abstract matching for subjects that contain bugs. It remains to evaluate how often abstract

matching miss paths that lead to a bug.
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Darga and Boyapati proposed glass-box model checking [DB06] for pruning search. They pro-

posed a static analysis that can reduce state space without sacrificing coverage. Glass-box explo-

ration represents the search space as a BDD and identifies, without executing code, parts of the

state space that would not lead to more coverage. However, glass-box exploration requires the

definition of executable invariants in order to guarantee soundness. In contrast, ∆Execution does

not require any additional annotation on the code.

5.1.2 Time-reduction techniques

We next discuss work related to the reduction of time in the major model checker operations:

execution, path exploration, and path pruning.

The application of space-reduction techniques provides a way to reduce overall exploration time

as the model checker explores less states. It is important to note, however, that model checkers

can reduce exploration time without reducing the size of the state space. Improving time efficiency

becomes more relevant with the increasing importance model checkers for programs and also with

the advances in space-reduction techniques. This section discusses related work targeting the

reduction of time itself, not space.

Recall from Section 2.5 that handling state is central to explicit-state model checkers [Hol97,

LV01, Ios02, MD05]; state representation is a concern that crosscutts different parts of a model

checker. Designers of software model checker need to decide (i) whether the model checker uses

native states or not for the execution of the subject program; (ii) whether it applies re-execution,

copying of state, or restoration of state to perform path exploration; and (iii) whether or not it

uses state comparison in order to prune paths. For example, Verisoft [God97] uses native states,

re-executes code, and does not compare state (it only applies partial-order reduction to prune paths

that lead to same states); CMC [MPC+02] uses native state, copies the state (it uses operating

system support to fork execution; it uses “copy on write” to only copy the parts of the state

prior to a write during the execution of a deterministic step), and compares states; JPF uses a

special representation of state, restores the parts of the state that a deterministic step mutates,

and compares states (it uses both partial-order reduction and heap symmetry).
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Execution

We use the term execution to refer to the operation that carries out a deterministic step. Some

software model checkers use native representation of state in order to speed up execution. With

native states, the model checker executes code using the same environment as a regular execution.

In the case of C, the model checker runs the compiled code for the program on top of the operating

system. In the case of Java, the model checker runs the code on top of a regular JVM. Examples of

model checkers that follow this design include Verisoft [God97], CMC [MPC+02,ME04,YTEM04],

and BOX (see Section 4.3.2). Verisoft was the first model checker to directly analyze the imple-

mentation code, specifically code written in the C language; CMC has been used to model check

Linux implementations of networking code (e.g., AODV and TCP) and file systems; and BOX is a

model checker for sequential Java code used to evaluate ∆Execution.

It is important to note that this approach does not offer to the model checker a unified view

of the memory. For example, CMC does not control the locations of the heap objects that a

program execution allocates. It reads state by following roots of heap objects which are available

to a test driver. A unified view of memory can be important to the efficient implementation of

some memory-intensive model checking operations, such as state comparison or backtracking. JPF

follow this approach. It represents the heap as a single array of integer arrays, which we call the

special representation of state. It can compare two instances of such arrays (or fragments of the

arrays), and efficiently index into this array. It is important to note that this special representation

can sacrifice execution as the model checker needs to keep track of all field writes so to be able

to recover state on backtracking. Mixed execution circumvents this problem for fragments of code

that are deterministic.

In summary, native state representation can be helpful to execute transitions, special state

representation can be helpful for defining memory intensive operations such as state comparison

and backtracking. Mixed execution explores one way for the model checker to combine different

state representation without a major sacrifice in performance of key model checking operations (See

Section 3). We remain to investigate other alternatives. For example, it remains to evaluate how

native execution and special representation of state can work together to speed up both execution

and the overall state space exploration. (See more details in Section 3.5.)
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Path exploration (backtracking)

Model checkers perform backtracking in many different ways. Verisoft [God97], for example, re-

executes code to explore a different exploration path. Other model checkers can restore state on

backtracking. For example, BOX creates “undo” objects. Each “undo” object stores the value of

a field prior to its mutation along the execution. This allows BOX to restore the entire state by

applying sequentially field modifications, i.e., “undoing” the changes. Yet another option is to copy

part of the state when performing a write in the state. For example, CMC [MPC+02] uses the

support of the operating system to perform copy-on-write. In this approach, state restoration is

not necessary because the model checker (in the case of CMC, using the operating system support)

copies the data when it identifies that execution is about to mutate state that is visible to a different

execution. (See more details in Section 2.5.)

∆Execution reduces, in both JPF and BOX implementations, the total time that backtracking

takes in the state exploration. The reason is that ∆Execution incurs in a smaller number of

backtrackings. For the JPF implementation, backtracking took a significant time of the exploration

(see Section 4.3) and the benefit of this reduction was more noticeable. In contrast, backtracking in

BOX did not consume a significant fraction of time (see Section 4.4) from the overall exploration;

the reduction of backtracking time for ∆Execution was thus smaller.

It is important to mention that mixed execution does not impact backtracking, and the impact

of ∆Execution on backtracking is not related to an improved backtracking mechanism. The im-

provement is due to the reduced number of backtrackings. Path exploration is related to our goal

of improving overall state space exploration but is orthogonal to mixed execution and ∆Execution.

The techniques we described can work with different backtracking mechanisms.

Path pruning (state comparison)

One particular way to prune paths from the exploration is to compare states that arise during the

search: the model checker can prune a path that leads to a state that was already visited. (See

Section 5.1.1.) The state comparison operation is typically responsible for a significant fraction of

the total exploration time.

JPF and BOX compare states using Iosif’s depth-first heap linearization algorithm [Ios01]. The
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implementations of ∆Execution in these model checkers compare states using the same algorithm.

∆Execution leverages the fact that set of states can be explored simultaneously to produce a set of

linearizations. We show in sections 4.3 and 4.4 that the algorithm that operates on sets performs

much more efficiently than the one that performs the linearization on one-by-one state from the set.

The main reason is that the optimized algorithm shares the prefixes of linearization that several

states have in common. It is important to note that we did not improve Iosif’s algorithm.

Musuvathi and Dill proposed an algorithm for incremental state hashing based on a breadth-first

heap canonicalization [MD05]. Their algorithm strives to preserve object identities when execution

mutates the object graph. (When using the depth-first algorithm, a small change in the graph

can result in a severe change in object identities.) In addition, the computation of the hash is

incremental: a model checker can compute the hash of the entire graph by composing the hashes

of individual objects. Such algorithm allows to reuse hashes for the parts of the trees that did

not change (as it tries to preserve object identities) and recalculate efficiently new hashes for the

parts that did change (as it is compositional). We plan to implement this algorithm in JPF and

to use ∆Execution to optimize state comparison even further. Again, note that ∆Execution does

not optimize the algorithm itself, but its performance when operating with sets of states.

5.2 Work with similar technique

This section discusses work that uses a technique that is similar to the ones discussed in this

dissertation.

5.2.1 Abstract Interpretation

Abstract interpretation [CC77] is a theory of approximations of the program semantics based on

ordered sets; more precisely, on lattices. Two major applications of abstract interpretation are

program optimization and debugging. The idea of an abstract interpretation is to execute the

program over an abstract domain. Such kind of execution introduces imprecision but can often

prove (simple) properties of a program.

Consider, for example, that the user is interested on properties about the sign of values of

program variables. To that end, the user defines the abstract domain of sign P{−, 0,+} that the
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program execution will use. Now, consider the abstract interpretation of the assignment c = a * b

where the variables a and b store, respectively, the abstract values {−,+} and {−}. The post-state

then associates {−,+} to variable c; this abstract value is the most precise value of c that results

from the multiplication. (Note that the interpretation manipulates sets and that it results in less

computation; the analyzer needs only to compute the resulting sign of the arithmetic operation.)

The abstract interpretation of a program sometimes requires to accumulate information that flows

from different program paths. For example, consider the program if(...){c=...}else{c=...} •.

The abstract value of the variable c at program point • is the “join” of the values that flow from

each branch. A join of two elements (in a lattice) is the least upper bound (i.e., the minimum

abstract value that is superior to both elements) of these elements.

∆Execution also merges sets of states. In this sense, merging is similar to the use of join in

an abstract interpretation that uses a partial-order whose elements are sets, and the order relation

is set inclusion. However, it is important to highlight that ∆Execution does not merge (/join)

states in the same way that abstract interpretation. For example, ∆Execution does not merge

states after the execution of conditional branches but only at method boundaries in a bounded-

exhaustive exploration of the test subject. Merging state in other program points potentially

requires to create more deltas of state. (See details in Section 4.5.)

5.2.2 Symbolic Model Checking

In contrast to explicit-state model checking, symbolic model checking represents states implicitly.

It represents state and the transition relation as boolean functions. Symbolic model checking

performs by finding fixpoints of these functions. (See Section 2.3.)

As previously discussed in section 2.3.2 and 4.5, the implicit encoding of states with heaps

can be problematic for the execution of program transitions, which is an important operation in

program model checking (see Section 2.5). ∆Execution provides a way to dealing with sets of

concrete heaps. It proposes a data-structure that encodes a set of concrete heaps and enables fast

execution of transitions. In addition, this data-structure provides operations on sets namely, union

(merge) and disjoint partition (split), which enables efficient overall exploration. For that reason,

we consider ∆Execution as a technique that performs symbolic model checking on heaps.
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5.2.3 Symbolic execution

Symbolic execution [KPV03,VPK04,XMSN05] is a special kind of execution that operates on sym-

bolic values. The state in a symbolic execution includes symbolic variables (that can represent a set

of concrete values) and a path-condition that encodes constraints on the symbolic variables. Sym-

bolic execution has recently gained popularity with the availability of fast constraint solvers and

has been applied to test-input generation for object-oriented programs [KPV03,VPK04,XMSN05].

In the general case, symbolic execution generates constraints that are undecidable. The recent tech-

niques combining symbolic execution and random execution show good promise in handling some

of common problems in symbolic execution such as undecidability of constraints, and unavailabil-

ity of libraries [GKS05,SMA05,CGP+06]. Conceptually, both symbolic execution and ∆Execution

operate on a set of states. While symbolic execution can represent an unbounded number of states,

∆Execution uses an efficient representation for a bounded set of concrete states. The exploration

with sets of concrete states avoids generating potentially undecidable constraints.

Symbolic execution deals well with primitive value but can be problematic to encode states

with heaps. One way to improve both ∆Execution and symbolic execution is to use a concrete

representation of set of heap as in ∆Execution, i.e. to explicitly enumerate all heaps of interest,

but to use a symbolic representation for primitives.

Offutt et al. [OJP99] proposed DDR, a technique for test-input generation where the values

of variables are ranges of concrete values. DDR uses symbolic execution (on ranges) to generate

inputs. DDR effectively splits the domains, using a technique called domain splitting, when new

constraints are added to the system. DDR requires inputs to be given as ranges, implements a

lossy abstraction (to reduce the size of the state space in favor of more efficient decision procedures),

and does not support object graphs.

∆Execution focuses on object graphs and does not require inputs to be ranges, but the use of

ranges as a special representation in ∆States could likely improve ∆Execution even more, and we

plan to investigate this in the future.
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5.2.4 Shape Analysis

Shape analysis [Rug04, YRS04, KLR02] is a static program analysis that verifies programs that

manipulate dynamically allocated data structures. Shape analysis uses abstraction to represent

infinite sets of concrete heaps and performs operations on these sets, including operations similar

to splitting and merging in ∆Execution. Shape analysis computes over-approximations of the

reachable sets of states and loses precision to obtain tractability.

Similarly to shape analysis, ∆Execution uses a representation of state that encodes a set of heap

objects. However, shape analysis focuses on static verification of programs; not testing. Its goal

is to prove heap properties for programs that manipulate dynamic data. Shape analysis derives

verification conditions from the program and attempts to prove the heap property from these

conditions. ∆Execution, in contrast, uses set of states for the actual execution of a program. It

encodes a bounded number of states in a set and can therefore decide any kind of heap property.

It is important to mention that we did not write oracles that check for heap properties such as lack

of cycles and lack of aliasing. We used sets solely to speed up the state space exploration.
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Chapter 6

Conclusions

Our goal is to advance the state of the art in model checking for the purpose of testing. More

specifically, our goal is to improve the efficiency of explicit-state model checking for programs with

dynamically allocated data. To that end, this dissertation presents two techniques. We call these

techniques mixed execution and delta execution. Our thesis is that:

Mixed Execution and Delta Execution can be effective for reducing overall exploration

time in the explicit-state space exploration of programs that manipulate dynamically

allocated data.

Mixed execution is a technique that speeds up model checkers that use special state represen-

tation. Such representations of state can be convenient to perform operations that are intensive

on the use of memory, such as backtracking and state comparison, but can sacrifice the execution

of transitions. Mixed execution enables model checkers that use special state representation to

execute code natively, i.e., using native states. This results in faster execution of transitions and

therefore faster overall exploration.

∆Execution is a technique that speeds up explicit-state model checking of programs by applying

symbolic model checking on heaps. The technique performs state-space exploration using sets. The

use of sets enables the model checker to take advantage of the overlapping that exist across different

executions in a systematic state-space exploration. This results in faster execution of transitions

and can also reduce the overall time to perform backtracking and state comparison.

We present next a summary of experimental results, a list of the contributions, and the final

remarks for this dissertation.
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6.1 Summary of experimental results

We implemented mixed execution in JPF. We evaluate mixed execution on seven subject programs

and one large case study. The experimental results on the seven smaller programs show that mixed

execution can improve the overall time for state exploration in JPF from 1.01x to 1.73x (with

median 1.13x), while improving the time for execution of deterministic blocks from 0.91x to 3.05x

(with median 1.64x). We also evaluate mixed execution on a larger case study containing bugs.

The exploration time on this experiment reduces from 1.14x to 1.41x (with median 1.23x). It is

important to point out that mixed execution reduces the overall exploration time by reducing the

execution time for deterministic blocks. Mixed execution does not affect the order of exploration,

the number of explored states, or any other aspect of the state exploration.

We implemented Delta Execution in two model checkers, JPF (Java PathFinder) and BOX

(Bounded Object eXploration) to evaluate the effectiveness of this technique in model checkers

with different designs. JPF is a popular general-purpose model checker for Java programs, while

BOX is a specialized model checker that we developed for efficient exploration of sequential Java

programs. The results show that ∆Execution improves the overall exploration in both tools, but

the improvements are due to different factors. The improvement in JPF is mainly due to execution

and backtracking, while in BOX it is mainly due to the optimized comparison of state as described

in Section 4.2.4.

We evaluate ∆Execution on ten simple subject programs and a larger case study with errors.

The results show that ∆Execution improves the exploration time for the smaller programs from

0.88x to 126.80x (with median 5.60x) in JPF and from 0.58x to 4.16x (with median 2.23x) in BOX,

while taking from 0.46x to 11.50x (with median 1.48x) less memory in JPF and from 0.18x to 2.71x

(with median 1.18x) memory in JPF. We also evaluate ∆Execution, using our JPF implementation,

on one larger case study with errors, the AODV routing protocol, where ∆Execution improves the

exploration time from 0.88x to 2.04x (with median 1.72x).

6.2 Contributions

We show next a list of the contributions of this dissertation.
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• Ideas of mixed execution and ∆Execution. We proposed two techniques to improve time

efficiency of the key operations of explicit-state model checking: execution, path exploration,

and path pruning. (See Section 2.5.) Mixed and ∆Execution can improve execution time,

while ∆Execution can, in addition, can improve overall time to perform path exploration and

path pruning.

• Proposal of a data structure for implementing sets of heaps with single-roots. The proposed

data structure is equipped with operations that allow efficient merging and splitting of sets

of concrete heaps (see Section 1.4).

• Implementation of mixed execution in JPF, and implementation of ∆Execution in both JPF

and BOX. We modified the JPF model checker to implement the two techniques and imple-

mented BOX, a custom built model checker specialized in sequential code.

• Evaluation on several subjects and a larger case study. We evaluated the techniques on data

structures used to evaluate other testing techniques [SM03,CS04,Qad,PE05,XMSN05,DB06,

VPP06] and on one larger case study, the AODV routing protocol [PR99].

6.3 Final remarks

We validate our thesis with experiments on several data structures and on a larger case study.

Mixed execution and ∆Execution lead to a faster state space exploration for most experiments.

The reduction in overall time increases with the increase in the bound the model checker uses

to perform bounded-exhaustive exploration. (The bound corresponds to the number of method

invocations the test driver generates from the initial state. See Section 1.5.1.) For small enough

bounds, the application of the techniques did not result in time reduction. But it is typical to use

larger bounds during the state space exploration. For example, in the AODV case study we used to

evaluate both techniques, the model checker only finds a property violation with a bound greater

than 8.

Mixed execution points out the importance of studying the trade-offs used in state-space explo-

ration for model checking and testing. ∆Execution points out that the use of sets can be effective

to reduce time of key operations in explicit-state model checking.
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Although the techniques we presented show promising results, more work can be done to im-

prove state-space exploration of programs that allocate dynamic data. Sections 3.5 and 4.5 show

directions for improving the techniques. For instance, we plan to investigate how to combine special

state representation with native execution. (Note that mixed execution employs native execution

only on deterministic blocks.) We also plan to evaluate ∆Execution with other symbolic represen-

tations and use it in different contexts. For instance, regression testing, patch validation, and in

the model checking of concurrent programs.
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