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Abstract—Testing configurable systems is important and
challenging due to the enormous space of configurations where
errors can hide. Existing approaches to test these systems are
often costly or unreliable. This paper proposes S-SPLat, a
technique that combines heuristic sampling with symbolic search
to obtain both breadth and depth in the exploration of the
configuration space. S-SPLat builds on SPLat, our previously
developed technique, that explores all reachable configurations
from tests. In contrast to its predecessor, S-SPLat sacrifices
soundness in favor of efficiency. We evaluated our technique
on eight software product lines of various sizes and on a large
configurable system – GCC. Considering the results for GCC,
S-SPLat was able to reproduce all five bugs that we previously
found in a previous study with SPLat but much faster and
it was able to find two new bugs in a recent release of GCC.
Results suggest that it is preferable to use a combination of
simple heuristics to drive the symbolic search as opposed to a
single heuristic. S-SPLat and our experimental infrastructure
are publicly available.
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I. INTRODUCTION

Configurable systems are those that can be adapted from a
set of input options, reflected in code in the form of variations.
These systems are prevalent. The Firefox web browser [4],
the Linux kernel [9], the GCC compiler infrastructure [5], and
the deals-recommendation web service Groupon [8] are some
well-known examples of configurable systems. Unfortunately,
configuration-related errors are not rare [11], [19], [25], [39].
Some of these errors have been widely publicized in the media
given the volume of users or data they affected [1], [3], [23].

A configuration space consists of all combinations of input
options that can be used to configure a system. Configuration
errors are often manifested in a small fraction of such space.
Finding an adequate set of configurations for testing is therefore
challenging. In one limit, testing exhaustively, against all
configurations, is unacceptably expensive. In another limit,
testing against one (default) configuration, albeit popular, leads
to high chances of escaped defects [22], [35]. These approaches
to testing make strong commitments to either cost or reliability.

Combinatorial Interaction Testing (CIT) [51] has been
popularized to balance probability of finding configuration
errors (i.e., efficacy) and efficiency [17], [30], [31], [38], [42].
Several sampling heuristics have been proposed in the past to
support CIT. For example, pairwise testing adequacy [52] is

obtained when the sample set of selected configurations covers
all possible pairs of input options. The intuition is that bugs
are uniformly distributed in the configuration space; a more
uniform search will then have higher chances of finding bugs.
Sampling heuristics are typically black-box; they do not take
code (test or app) into account. This is an important source of
imprecision that can lead to error misses and higher cost.

More recently, sound testing techniques have been pro-
posed [28], [29], [33], [41]; they assure that all configuration
errors that can be captured with a given test will be captured.
These techniques dynamically explore all reachable configura-
tions from a given test. The hypothesis is that, when each test
is analyzed separately, configuration complexity is much lower
compared to the (theoretical) combinatorial complexity. This is
the case, for example, when test execution dynamically accesses
a relatively small number of configuration variables [29].
Unfortunately, reaching soundness without compromising cost
is challenging. Recent empirical studies indicate that scalability
depends on many factors including the subjects and tests
used [40], [47], [49].

In summary, the inability to reason about test cases consti-
tutes an important limitation of sampling techniques and the
potential high execution cost is an important drawback of
dynamic sound techniques. This contrasting set of limitations
motivated us to explore the synergistic integration of these
approaches with the goal of finding a better balance between
reliability (as to miss fewer errors) and cost (as to find errors
faster). In this study, we used SPLat [29], [47], [49], a sound
technique, previously developed by the authors, that monitors
variable accesses in one execution and, based on that, decides
which configurations should be executed next. Our goal is
to understand the effects of combining sampling heuristics
with a sound technique for testing configurable systems. We
propose S-SPLat, a variant of SPLat that selects configurations
according to a given sampling heuristic. Note that tension
between soundness and tractability has a long history in
program analysis. Recently, the static analysis community
acknowledged the importance of making (and documenting)
conscious unsound design choices in favor of practical soundy
solutions [34]. A similar tension exists in the context of
dynamic analysis techniques, such as SPLat.

We analyzed S-SPLat with five basic heuristics that have
demonstrated promising results in different studies [11], [38]
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and eleven combinations of these basic heuristics. We con-
sidered eight relatively-small software product lines and one
large configurable system (GCC) in the evaluation. Results
confirm expectations that regular SPLat often does not scale,
i.e., it is unable to explore the space of reachable configurations
completely within a long time budget. This situation occurs
even on smaller subjects, where SPLat did not complete
exploration in two of eight cases. For GCC, SPLat could finish
exploration of only 5.7% (202 of 3,557) of the tests after one
week of execution. Considering S-SPLat, results indicate that,
compared to SPLat, techniques dramatically reduce the number
of configurations explored yet retaining their ability to reveal
failures and crashes. The heuristic variants of S-SPLat were able
to find all five crashes that we previously-documented [49]
on GCC release 4.8.2 and uncovered two new crashes on
release 6.1, one of which was reported to the GCC team and
was already fixed. Overall, considering our experimental setup,
results suggest that it is preferable to combine some heuristics
that demand a relatively low number of test requirements (e.g.,
one-enabled and one-disabled [11]) than using heuristics that
solicit more test requirements (e.g., pairwise [52]).

This paper makes the following contributions: (idea) we
propose a hybrid approach to test configurable software that
integrates sampling with systematic exploration of configu-
rations (Section IV). Our approach is similar in spirit to
hybrid concolic execution [21], [36]; (implementation) we
implemented S-SPLat, a variant of our previously-developed
technique SPLat [29]. S-SPLat selects test-reachable configu-
rations according to a given sampling heuristic; (evaluation)
we evaluated S-SPLat on a number of subjects of various sizes
and sources (Section V). Results indicate that the approach is
promising, reducing cost and retaining ability to find failures
and crashes; (prototype) we implemented a prototype of our
technique. The code, datasets, containers, and scripts are all
accessible from our website [48].

II. BACKGROUND

This section introduces concepts and terminology to support
the discussion along the text.

A. Configurable systems

Configurable Systems (CSs) are systems that can be adapted
or configured according to a set of (configuration) input options,
represented at the code level by configuration variables, also
known as feature variables. To simplify definitions we assumed
that configuration variables are boolean and that every input
option maps to a single variable. Our definitions extend to any
range types, booleans being a special case. If a configuration
option is enabled, it means that the corresponding variable
is set to true. Otherwise, it means that the variable is set to
false. We make no distinction between Software Product Lines
(SPLs) [12], [15] and other kinds of configurable systems.

Let φ be a set of boolean variables denoting the configuration
variables of the system. A configuration c : φ ⇀ { f alse, true}
is a partial function from variables to boolean values; c maps
some (not necessarily all) configuration variables to values

class Notepad {
void toolBar() {

if(Toolbar) {
...    
if(Wordcount)

...   
}

if (Menubar) { ... }
}
...

void test() {
toolBar();

}
}

Config-1:  T !W !M 
Config-2: !T  W !M 
Config-3: !T !W M 

one-enabled

Config-1: !T W M 
Config-2:  T !W  M 
Config-3:  T  W !M 

one-disabled

Config-1: !T !W !M 
Config-2:  T  W  M 

most-enabled-disabled

Config-1: !T !W  M 
Config-2: !T  W !M 
Config-3:  T !W !M
Config-4:  T  W M 

pair-wise

void constructMenu(){

constructMenu();

Fig. 1. Excerpt of Notepad and sampling sets for testing.

false or true. A configuration can be encoded as a boolean
formula fc =

∧
pi, where pi = (xi|¬xi) for xi ∈ φ. We denote

with | fc| the number of variables referenced in fc. We say that
a configuration c is complete iff | fc|=|φ|, i.e., all variables had
their values assigned to true or false; it is partial otherwise,
when only a subset of the variables had their values assigned.

Example: Let φ = {A,B,C,D,E}. Configuration fc1=A∧
B∧¬C∧D∧E is complete. Configurations fc2=A∧¬B and
fc3=A∧B∧¬C∧E are incomplete. c2 can be also written as
10???, where the ith position corresponds to the ith configuration
variable according to a given total order on variables. We use
numbers 1 and 0 to indicate, respectively, the true or false
values and the symbol ? to indicate “undefined”, it means that
no value was assigned to a given variable during test execution.

A feature model (FM) [24] distinguishes which combinations
of variables are legal from those that are not. A complete
configuration is valid if it satisfies the constraints of the feature
model. A partial assignment is satisfiable if it can be extended
to a valid complete assignment. In practice, the FM may not
be always documented or available.

B. Sampling heuristics

Notepad is a visual text editor, implemented as a configurable
system, that has been previously used in related studies [26],
[27], [29]. Figure 1 shows an excerpt of Notepad to illustrate
sampling heuristics. Function constructMenu creates the menu
on screen whereas the corresponding test checks if the menu
has been properly created. Note that the call to constructMenu

accesses the configuration variables Toolbar (T), Wordcount

(W), and Menubar (M), which are relevant for the presentation
of both the toolbar and menubar on screen. The names in
parentheses denote corresponding input configuration options.

Among the various sampling heuristics proposed in the
literature related to testing configurable systems, we considered
those that have been recently evaluated and are applicable in
our context [11], [38]. The heuristic one-disabled samples
configurations that have only one option disabled and all other
options enabled whereas one-enabled samples configurations
that have only one option enabled and all the rest disabled.
The heuristic most-enabled-disabled combines two sample
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sets independently: one set with most options enabled and one
set with most options disabled. In case feature constraints are
not considered, this heuristic will only check two configurations:
the one with all options enabled and the one with all options
disabled. Finally, t-wise [52] samples all combinations of t
configuration options. In particular, pairwise (t-wise with t=2),
checks all pairs of configuration options, and it selects four
configurations of the example of Figure 1. Considering options
T and W, we can see that there is a configuration where both
options are disabled (Config-1), two other configurations with
only one of them enabled (Config-2 and Config-3), and another
configuration where both configuration options are enabled
(Config-4). The same situation occurs for configuration options
T and M and options W and M.

Figure 1 shows, at the right-hand side, sampling sets for
each of these heuristics. Notepad has a total of 17 variables,
however, to simplify illustration we focused only on variables
M, T, and W. For example, a sample set for one-enabled can
be obtained with only three configurations; each configuration
corresponding to the selection of one variable.

It is important to note that these heuristics are “black-
box”; they do not take into consideration test and code. All
tests will be executed against the same set of pre-computed
configurations. This means that this approach can miss relevant
configurations (leading to error misses) and can also include
irrelevant configurations (leading to additional cost). Again,
note that we used three variables on Figure 1 to simplify
illustration. Had all 17 variables of Notepad been considered
the size of the sample set would be significantly larger.

C. SPLat

In a nutshell, SPLat [29] works as follows. It executes the
test on one configuration, observes the values of configuration
variables that have been accessed during the execution, and
uses these values to determine what other configurations should
be considered in subsequent test executions. For example, if
a test execution accessed only one configuration variable, f,
with value false, then SPLat re-executes the test with f set to
true. If that second execution accesses no other configuration
variables, the search stops. Otherwise, it continues to explore
the combinations of values of other accessed variables. SPLat
repeats this process until it explores all dynamically reachable
configurations or until it reaches a specified bound on number
of configurations. As output SPLat returns, for each test, the
configurations explored and the respective results (pass or fail).

SPLat only explores configurations which are reachable
through tests. In contrast to sampling, SPLat does not explore
configurations unrelated to the test and cannot miss configura-
tions that would otherwise reveal failures. However, SPLat can
access several variables through a test leading to high execution
cost, a factor that can be controlled through sampling.

III. EXAMPLE

This section presents an example comparing three approaches
to testing: sampling with one-enabled, sound exploration with
SPLat, and a combination of sampling and sound exploration.

We used the Notepad test from Figure 1 in this comparison.
Figure 2 shows the sample sets obtained. The values correspon-
ding to variables Toolbar, Wordcount, and Menubar appear in the
initial positions of the configuration vectors (see Section II-A)
in these sample sets.

Config-1: 0?0??????????????
Config-2: 0?1?????????????? 
Config-3: 100?????????????? 
Config-4: 101??????????????
Config-5: 110??????????????
Config-6: 111?????????????? 

SPLat

Config-1:  10000000000000000
Config-2:  01000000000000000
Config-3:  00100000000000000
Config-4:  00010000000000000
Config-5:  00001000000000000

. . .
Config-16: 00000000000000010
Config-17: 00000000000000001

Regular Sampling (one-enabled)

Config-1: 0?1??????????????
Config-2: 100?????????????? 

S-SPLat (one-enabled)

Fig. 2. Configurations generated with one-enabled, SPLat, and S-SPLat,
for the Notepad test from Figure 1.

Notepad has 17 configuration variables. Ignoring constraints,
a sampling set adequate to one-enabled includes 17 configura-
tions, one for each configuration variable to be enabled. Note,
however, that the function under test, constructMenu, accesses
only three of these variables (see Figure 1). There are 14
configurations in this set that produce the same output as they
do not access any variable reachable through the test.

In contrast to sampling, SPLat runs the test only on
reachable configurations, i.e., configurations that relate to
accessed variables. For this case, SPLat runs the test against
six configurations, as shown in Figure 2. Furthermore, note
that variable Wordcount is only accessed if variable Toolbar is
accessed; such conditional accesses enable further reduction of
the search space. To provide soundness guarantees, SPLat needs
to explore all reachable configurations; it assumes that tests
reach a relatively small number of variables. Unfortunately, we
observed that, for a large system, such as GCC, with hundreds
of configuration options, exploring all reachable configurations
is impractical for several tests [47], [49].

This paper proposes S-SPLat (for Sampling with SPLat)
to mitigate the individual limitations of sampling and SPLat.
S-SPLat uses the set of reachable configurations from SPLat

(see Section II-C) to sample those configurations that satisfy
a given sampling heuristic. S-SPLat is by definition unsound.
The intuition is that the use of heuristics can provide a better
balance between cost and reliability and that balance is essential
for practicality in this domain [10], [34], [36].

Figure 2 shows results of S-SPLat with one-enabled. The
corresponding sample set includes only two configurations.
Note that it is not possible to build a one-enabled-configuration
with variable Wordcount set as it is not possible to access
Wordcount without also accessing variable Toolbar.

S-SPLat proceeds as follows to explore these two configura-
tions. In its first iteration on this test, S-SPLat assigns default
values to every variable it accesses (as SPLat does), reaching
the partial configuration ¬T ∧ ¬M, which clearly does not
satisfy one-enabled. At this point, S-SPLat looks for neighbor
configurations to ¬T ∧¬M that satisfy one-enabled and it finds
¬T ∧ M, which corresponds to the first configuration vector in
the figure: 0?1.... After executing the test on configuration
0?1..., S-SPLat backtracks. Note that, at that point, variable
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M was fully explored under ¬T . Then, S-SPLat initiates a
new iteration from a partial configuration where T holds.
At the end of execution of the corresponding path, S-SPLat

explores the configuration T ∧¬W ∧¬M, which also satisfies
one-enabled. At that point S-SPLat cannot find any other
reachable configurations that satisfy one-enabled, and the
execution finishes reporting two configurations.

IV. SAMPLING WITH SPLAT

This section describes S-SPLat (for Sampling with SPLat),
a modified version of the SPLat algorithm [29]. S-SPLat

samples configurations from the set of dynamically reachable
configuration from a given test that SPLat explores. In the
following we present the workflow of S-SPLat, highlighting
key modifications made to the original SPLat algorithm. A
complete version of SPLat can be found elsewhere [29].

A. Basic workflow

Figure 3 shows the pseudo-code of S-SPLat. It takes as
input a test t for a configurable system and an optional feature
model fm. To drive the search, the algorithm uses a map that
stores the values of feature variables (variable state at line 7)
and a stack of feature variables accessed during the test run
(variable stack at line 8). An object of type Assign encodes an
assignment of boolean values to feature variables. It denotes
a partial configuration (see Section II-A). S-SPLat supports
different sampling heuristics (line 4).

The algorithm first initializes the values of feature variables
(lines 13–16) using the feature model. Mandatory features are
set to true (the only value they can hold) and optional features
are initially set to false. We omit details of the feature model
interface for brevity. It is important to note that the steps related
to the feature model are optional. We did not show this variant
for brevity. When present, feature models enable consistency
checks on configurations, reducing the explored search space.
After this initialization step, S-SPLat automatically instruments
the code under test to track variable read accesses (line 19).

The main loop of the algorithm (lines 21–43) looks for a
partial configuration (lines 30–42) and runs a test against that
configuration (line 25). Whenever test execution is about to read
a feature variable, it calls back the method notifyFeatureRead

(line 47) and, if the variable has not been visited before,
it is pushed onto the stack and a new value is assigned to
it. When S-SPLat finishes the execution of a test on one
configuration (line 25), it has effectively covered a set of
complete configurations, extensions of the corresponding partial
configuration. SPLat determines the next configuration to
execute by backtracking on the stack (lines 30–42). If the
last read feature has value true, then S-SPLat has explored
both values of that feature, and it is popped off the stack (lines
32–36). If the last read feature has value false, then SPLat has
explored only the false value, and the feature value should
be set to true (lines 35–41). This process repeats until the
stack becomes empty and all dynamically reachable (partial)
configurations are covered.

1 /* data structures */
2 class FeatureVar {...}
3 class Assign { Map<FeatureVar , Boolean > state; }
4 enum Mode = {RANDOM, ONE_ENABLED, ..., PAIRWISE};
5

6 /* state */
7 Map<FeatureVar , Boolean > state;
8 Stack <FeatureVar > stack;
9 static boolean checkfm = false;

10 static Mode heuristic = Mode.RANDOM;
11

12 void S-SPLat(Test t, FeatureModel fm) {
13 // Initializes features
14 state = new Map();
15 for (FeatureVar f: fm.getFeatureVariables())
16 state.put(f, fm.isMandatory(f));
17

18 // Instruments the code under test
19 instrumentOptionalFeatureAccesses();
20

21 do { // Repeatedly run the test
22 stack = new Stack();
23

24 // run test with configuration in state (line 7)
25 t.runInstrumentedTest();
26 Assign pa = getPartialAssignment(state , stack);
27 print("configs covered: " + fm.getValid(pa));
28

29 // Look for next configuration to run test at line 25
30 while (!stack.isEmpty()) {
31 FeatureVar f = stack.top();
32 if (state.get(f)) {
33 state.put(f, false); // Restore
34 stack.pop();
35 } else {
36 state.put(f, true);
37 pa = getPartialAssignment(state , stack);
38 // check if satisfying vector is reachable from stack
39 if (heuristicIsSatisfied(pa, checkfm))
40 break; // success!
41 }
42 }
43 } while (!stack.isEmpty());
44 }
45

46 // Called-back from test execution
47 void notifyFeatureRead(FeatureVar f, FeatureModel fm) {
48 if (!stack.contains(f)) {
49 stack.push(f);
50 state.put(f, fm.isMandatory(f));
51 }
52 }
53

54 boolean heuristicIsSatisfied(Assign pa, boolean checkfm){
55 boolean res = false;
56 switch(heuristic){
57 case ONE_ENABLED:
58 res = checkOneEnabled(pa, checkfm); break; ...
59 }
60 return res;
61 }

Fig. 3. S-SPLat algorithm (SPLat algorithm modified).

B. Sampling

The method heuristicIsSatisfied (lines 54–61), called
at line 39, checks if the partial configuration pa, passed as
parameter, satisfies the selected sampling heuristic. This method
delegates to a “checking function” the decision of whether
or not the configuration should be sampled. If a relevant
configuration is found, execution proceeds to that configuration
(line 25). If not, S-SPLat keeps searching for a configuration on
the stack. If no configuration can be found, the stack becomes
empty, and SPLat terminates (line 43).

Checking functions. Test requirements vary with the sampling
heuristic. A (boolean) checking function answers positively
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1 // Checks if pa covers a one-enabled test requirement
2 boolean checkOneEnabled(Assign pa, boolean checkFM){
3 boolean shouldSample = false;
4 int oneEnabledCounter = 0;
5 for(boolean b : pa.state.values())
6 oneEnabledCounter += b?1:0;
7 if(oneEnabledCounter == 1)
8 shouldSample = true;
9 if (!shouldSample) return false;

10 if (checkFM) return isSAT(pa);
11 return true;
12 }

Fig. 4. Example of a checking function for S-SPLat Algorithm

whenever an input configuration satisfies a test requirement
that has not been yet covered. Figure 4 shows an example
checking function, checkOneEnabled, for deciding if the input
configuration should be sampled according to one-enabled. This
function is called at line 58 from Figure 3. For this heuristic,
the configuration will be considered for sampling only if the
number of variables set in the partial input configuration (pa)
is exactly one. If the parameter checkFM is set, this function
will also check if the configuration is satisfiable (line 10)
according to the input feature model. Note that this check is
only performed after a test execution completes, producing a
partial configuration (line 25); not during test execution. Other
sampling heuristics are implemented similarly. We chose this
function for brevity.

C. Handling non-boolean variables

Non-boolean variables are common in configurable systems.
We describe in the following how S-SPLat handles variables
with integer ranges, which are relatively common in GCC. One
option to handle range types is to incorporate range values in the
S-SPLat algorithm. With that, instead of making a binary choice
where the algorithm assigns a (boolean) value to a variable,
S-SPLat would make a multi-valued choice. We disconsidered
that design choice as it would create too many very similar
configurations by construction. Instead, we applied the Ostrand
and Barcer’s category partitioning method [43], treating range
types as boolean types. More precisely, we partitioned the input
domain in two categories, enabled and disabled, selecting one
and only one element in the range to belong to the disabled
category (0 if in the range).

V. EVALUATION

We evaluated S-SPLat in two scenarios. In the first scenario
we considered relatively small software product lines with the
goal of identifying patterns of performance across different
sampling heuristics. In the second scenario, we evaluated
the techniques on a large configurable system (GCC [5])
manifesting different characteristics compared to SPLs. The
goals of this experiment are to validate whether results obtained
on GCC are consistent with those observed on SPLs, and to
assess the ability of S-SPLat’s heuristics to find real faults.
Furthermore, we evaluated the influence of feature constraints
in our techniques.

We pose the following research questions:
• RQ1. Which heuristics maximize efficiency?
• RQ2. Which heuristics maximize efficacy?

TABLE I. Software Product Lines used.

Subject #Tests #Conf. variables #Confs. #Valid Confs. LOC

101Companies 38 10 1,024 192 2,059
DesktopSearcher 31 16 65,536 462 3,779

Email 4 8 256 40 1,233
GPL 24 13 8,192 73 1,713

JTopas 11 5 32 32 2,031
Notepad 43 17 131,072 256 2,074
Sudoku 5 6 64 20 853
ZipMe 32 13 8,192 24 3,650

• RQ3. Which heuristics (basic or combination) maximize
efficiency and efficacy?

A. Software Product Lines (SPLs)

Subjects. We selected eight SPLs previously used in other
studies [13], [26], [32], [40]. All these SPLs provide tests
and their feature variables are dynamically bound to code.
Table I characterizes these subjects. Column “#Tests” and
“#Features” show, respectively, number of tests and feature
variables. Columns “#Confs.” and “#Valid Confs.” denote,
respectively, the number of configurations and the number
of configurations which are valid according to the feature
model. Finally, column “LOC” shows code size.

Techniques. We considered six basic techniques: the
baseline SPLat and the following heuristics for selecting
configurations with SPLat: random (ran), one-enabled (oe),
one-disabled (od), most-enabled-disabled (med), and
pairwise (pw), as defined in Section II-B. We also considered
combinations of these basic heuristics to answer RQ3. We set
a global timeout of 48h on SPLat and random per subject as
these techniques can potentially take too long to finish.

1) Answering RQ1 (Efficiency): We used the average
number of configurations explored per test that a technique
selects as metric for efficiency. Using wall clock time could
bias results in favor of heuristics that select configurations
exercising short paths. In addition, results are more vulnerable
to measurement noise for small subjects and short-running tests.
To note that previous studies used similar metrics for similar
reasons [26], [38]. Figure 5 shows the distribution of results
per technique as boxplots. A point in the boxplot indicates a
measurement (i.e., the average number of configurations that a
basic technique explores on a given test).
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Fig. 5. Average number of samples per technique.

As expected the number of configurations that SPLat and
random explore is much higher compared to alternative tech-
niques. On average, random sampling (on S-SPLat) explores
half of the configurations that SPLat explores, i.e., every con-
figuration that S-SPLat reaches, when using random selection,
has fifty percent chance of being selected. Intuitively, if SPLat’s
exploration blows up, S-SPLat with random exploration should
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also blow up. We considered different rates of sampling as to
assess its effects on results (see Section V-E).

SPLat and random selected sample sets with average sizes
of 232 and 120, respectively. Recall that we configured
random to explore, on average, half of the configurations that
SPLat explores. Furthermore, it is important to note that the
distributions of SPLat and random do not include results for
DesktopSearcher and Notepad. These techniques timed out on
these subjects because of the cost of exploring a high number
of configurations on long-running (GUI/system) tests. This
case sheds light to the inherent limitation of these techniques.

Considering all basic techniques but SPLat and random,
the size of the sample sets (i.e., average number of confi-
gurations explored per test) ranged from 2 to 15.3. Overall,
most-enabled-disabled explored the smallest sample sets
whereas one-disabled explored the largest sample sets.

2) Answering RQ2 (Efficacy): In this experiment we used
the average number of failures per test as metric to assess
efficacy of each technique. We considered distinct failures (as
opposed to faults) as proxy for efficacy because documented
faults are scarce for these programs. We ignored repeated
manifestations of failures, i.e. failures of a given type that have
been already reported with a given pair of test and technique.
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Fig. 6. Average number of failures per
technique.

Figure 6 shows
the distributions of
number of distinct
failures found per
technique. We observed
that one-disabled and
pairwise found, on
average, more failures than any other technique, except SPLat.
Given the number of configurations that random selects, we
found surprising that it performed poorly in several cases. This
result indicates that the use of heuristics to explore the search
space more uniformly is important. We also observed that
SPLat’s distribution of results, ignoring outliers, is not very
different compared with the distributions of other heuristics.
Finally, considering the subject Email, we observed that all
techniques revealed the same failures. That happened because
the failure density ratio was high on this subject, indicating,
perhaps as expected, that high failure density ratio favors
more aggressive heuristics.

3) Answering RQ3 (Efficiency and Efficacy): The goal
of this experiment is to better understand the relationship
between efficiency and efficacy, which are conflicting op-
timization dimensions. A technique can optimize one di-
mension but perform poorly with respect to the other(s).
SPLat, for example, optimizes efficacy but perform poorly,
relative to others, with respect to efficiency. In addition to
the basic heuristics discussed, we also considered combi-
nations of heuristics in this experiment. The intuition is
that unexpected combinations could provide a better over-
all balance between these dimensions. We implemented
11 combinations, referred with the following ids (symbol
“+” indicates combination): c1:oe+od, c2:oe+med, c3:oe+pw,
c4:od+med, c5:od+pw, c6:med+pw, c7:oe+od+med, c8:oe+med+pw,

Fig. 7. Comparison of efficiency (x-axis) versus efficacy (y-axis). The Pareto
front (shows non-dominated data points) is highlighted with filled circles.

c9:od+med+pw, c10:oe+od+pw, c11:oe+od+med+pw. We obtained
results for these combinations by taking, for each test, the
union of the sample sets and failure sets generated by the
corresponding basic heuristics. For example, let us consider
technique c6, which combines most-enabled-disabled (med)
with pairwise (pw). Suppose med selected two configurations on
a given test, namely 11111? and 00000?, and found one failure
whereas pw selected three configurations for the same test,
namely 11111?, 0110?1, and 11??00, and found two failures,
with one of those also detected by med. For this case, c6

produces four configurations and two failures; duplicates are
ignored. Note that the set of combinations are partially ordered
by inclusion (e.g., c1 v c10 v c11).

Figure 7 shows results, with each plot focusing on one
subject. The x-axis shows average number of configurations per
test and the y-axis shows average number of failures detected.
A point in the plot denotes the result of a heuristic (basic or
combination) on a given subject. To facilitate visualization, the
plots show the Pareto fronts [16] of measurements as solid
circles. A point that belongs to the front is not dominated by
any other point. The front helps one to make an informed
decision on which technique should be selected provided she
decides on the importance of one dimension over the other.
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Note that, as a sound technique, SPLat appears in the front
of all plots with the exception of Desktop and Notepad (due
to timeouts). The plots also show that SPLat and med are, in
almost all cases, at two opposing extremes in the optimization
scale (see corner positions); these techniques optimize one
dimension at the expense of the other dimension. Furthermore,
we found that combination techniques appeared consistently
at the front or close to it. Note that the fronts serve as
reference of dominance, not to draw general conclusions about
performance – the distance from a non-dominated point to
dominated point (i.e., technique) can be minor in several cases.
For example, combination c7 performed consistently well in
both dimensions but only appeared at the front in three cases.

Summary: Results indicate that the heuristics studied dra-
matically reduce the number of configurations explored
by SPLat yet retaining their ability to reveal failures.
In particular, the basic heuristic one-disabled and the
combination heuristic c11 performed consistently well
with respect to efficiency and efficacy in all cases.

B. GCC

We also evaluated S-SPLat against the GNU Compiler
Collection (GCC) [5], a large configurable system with hun-
dreds of options [6]. The primary goal of this experiment is
to assess how the heuristics perform on a large system with
hundreds of input options. We considered three different setups
in this experiment. In one setup we measured ability to find
test failures in the GCC release 6.1 [7] (Section V-B1). Then,
we evaluated how the basic heuristics perform to find unknown
crashes, also using release 6.1 (Section V-B2). Finally, we used
an older release of GCC, 4.8.2, to evaluate ability of the basic
heuristics to find known crashes (Section V-B3). We focused
on crashes that the authors found in a previous study [49].

Tests analyzed. GCC uses DejaGnu [2] as testing frame-
work. The test artifact typically includes some code fragment
to be compiled, a number of compilation tasks, and required
options. For example, compilation tasks include preprocessing,
compiling, assembling, linking, and running code [20]. We
analyzed a total of 3,557 tests from the “gcc-dg” test suite.
We focused on that suite because previous study has shown
a higher incidence of bugs found with it [49]. A GCC test
runs by default against a single (default) configuration. SPLat
runs the same test on multiple configurations, but respecting
mandatory test options.

Options analyzed. We limited the number of options to
analyze (see [6]) given the long execution times found in some
test cases. We used the 50 most frequently cited options in the
GCC bug reports from the period of April 27, 2016 to May 27,
2016. The rationale was that more bugs could be found close
to where existing bugs have been recently reported. We noticed
that the top options do not change much across months.

Techniques. This experiment considered all basic and com-
bination heuristics of SPLat. We did not consider SPLat itself
because of its high execution cost. For example, considering this
setup, SPLat could finish execution of only 202 tests (∼ 5.7%)
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(a) Efficiency. Distributions of num-
ber of configurations each technique
explores per test.
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Fig. 8. Failures in GCC version 6.1.

after one week of execution. Recall that this inherent limitation
of SPLat motivated this work. For random, which samples
configurations reachable from SPLat’s execution, we used a
bound of 300 configurations per test. This number is twice the
average number of configurations explored by pairwise, which
is the heuristic that explores more configurations amongst the
basic heuristics we considered.

1) Finding failures in the GCC version 6.1: This experiment
uses test failures to measure efficacy of the techniques. These
failures are not necessarily fault-revealing; they may be
manifestations of undocumented preconditions in DejaGnu tests
(which are still important to report). We used the GCC release
6.1, available since April 2016, in this experiment. Figures 8(a)
and 8(b) show, respectively, efficiency and efficacy results.
Figure 8(c) shows the relationship between these two metrics.

Considering each dimension in separate, results indicate
that the heuristic pairwise found more failures than any
other technique in absolute numbers, however, it was also
one of the most expensive techniques, only behind random.
More importantly, the heuristics one-enabled and one-disabled

found almost as many failures as pairwise but required much
fewer configurations. This observation indicates that pairwise
performs relatively worse in GCC compared to SPLs. One
hypothesis for this is that the number of variables accessed
in GCC was higher compared to SPLs. The intuition is that
pairwise is more sensible to that factor than other techniques.
Figure 9 shows a histogram of variables accessed per test in
GCC. Indeed, note that most of the tests in GCC often access
more variables than the total number of variables in SPLs.

Figure 8(c) relates efficiency and efficacy. The arrangement
of two groups of techniques in opposing corners of the plot is
noticeable. Observe that, although the range of the x-axis is
wide, the range of the y-axis is relatively narrow, going from
∼1.0 to ∼1.2 failures detected per test. Conceptually, it means
that it is preferable to pick the best performing heuristics in the
leftmost group as cost savings are high and failure loss is low.
Within that group, the combinations c1 and c7, which builds
on one-enabled and one-disabled, reported more failures per
test. This observation is consistent with the results reported in
Figure 8 and the results involving SPLs.
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Fig. 9. Frequency of variables accessed per test. We obtained data by
randomly sampling 300 configurations over all 3,557 tests. A total of 24
variables model the 50 options considered in this study.

Summary: Results show that one-enabled and
one-disabled found the higher number of failures per
test, exploring a relatively low number of configurations.

2) Finding crashes in the GCC version 6.1: In this
experiment we looked for crashes in the test suites
gcc-dg and dg-torture. Considering the suite gcc-dg,
most-enabled-disabled did not find crashes, one-enabled

found two crashing configurations on different tests (pr44545.c
and pr47086.c), one-disabled found two crashes but on the
same test (pr47086.c), and pairwise found multiple crashing
configurations but on the same two tests that one-enabled

found crashes. We filed one bug report1 for all these cases,
given the similarity of the configurations and the similarity of
the crash reports. The GCC team confirmed and fixed the bug.
Considering the suite dg-torture, only one-enabled found a
crash in one configuration and on a single test (pr48953.c).
We also filed a bug report2 to for this case; the GCC team
confirmed it was a bug that had been recently fixed and marked
the report as duplicate.

3) Finding crashes in the GCC version 4.8.2: Next we
evaluated the techniques on bugs found in a study, previously
conducted by some of the authors of this paper, on release
4.8.2 of GCC [49]. The primary goal of this experiment is to
evaluate the techniques in finding real known bugs3 that SPLat
was able to find when given a large time budget. In this setup,
we used 29 tests that we knew a priori would reveal crashes
in specific configurations. Overall, these crashes exposed five
distinct bugs. On a crash, the GCC testing infrastructure reports
an “Internal Compiler Error (ICE)” message followed by a
specific error description which includes the statement that
manifested the crash. We used these messages to identify the
crash as to avoid counting multiple times the same one.

Considering efficiency, we observed that the heuristic
most-enabled-disabled was the most efficient, followed
by one-enabled, one-disabled, and pairwise. The same
pattern was observed in the experiment with GCC release
6.1 (see Section V-B1). Considering efficacy, at least one
technique detected each bug, with all five bugs detected.
Furthermore, all four basic techniques found the first and

1https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71512
2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77320
3All bugs were confirmed by the GCC team: https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=<x>, where x=61980, 62069, 62070, 62140, 62141

Basic Crash Id

Technique 1 2 3 4 5

med X X X X
oe X X X
od X X X
pw X X X

(a) Distribution of crashes found.
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(b) Number of samples (x-axis) vs. number of bugs (y-axis).

Fig. 10. Crashes in GCC version 4.8.2.

second bugs, both one-enabled and pairwise found the third
bug, only most-enabled-disabled found the fourth bug, and
most-enabled-disabled and one-disabled found the fifth bug.
Figure 10(a) summarizes these results. Overall, we observed
that most-enabled-disabled found four of the five bugs, and
each other basic technique found three bugs. We found
surprising that most-enabled-disabled revealed more crashing
while exploring few configurations per test. In particular, it
was the only technique that found crash number four. It is also
worth noting that pairwise explored many more configurations
but could only reveal three crashes.

Figure 10(b) shows results relating number of bugs found
and number of samples required to find those bugs. Similar to
the plot from Figure 8(c), techniques form clusters based on
the number of configurations explored per test. In addition, the
clusters are very similar across these two experiments. This plot
shows that most-enabled-disabled and c2 are not dominated
by any other technique (filled circles indicate the Pareto front).
We also observed that c2 found all bugs with a relatively small
number of samples.

Finally, analyzing configurations associated with each bug
we observed that crashes were manifested with only few
options enabled. This can explain why one-enabled and
most-enabled-disabled performed well. These results confirm
previous observations that configuration-related errors are often
manifested in configurations involving a small number of input
options [11], [19], [31], [39].

Summary: Results shows that all five bugs were captured
by at least one basic heuristic and each heuristic captured
at least three of the bugs. Considering combination
techniques, the combination of oe and med found all
bugs with a relatively small number of configurations.

C. Handling constraints

Feature constraints add a new dimension to this study. An
error report manifested by a test on an invalid configuration
is considered a false positive. For space limitations, we
summarized here results we obtained validating constraints.
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Table I provides an indication of the complexity of the feature
models of SPLs from the proportion of configurations which
are valid, per subject. For those subjects, we observed that
most configurations selected without constraint validation are
invalid, reflecting the complexity of the models. For example,
considering one-disabled, 54% of the selected configurations
are invalid and 43% of failures are false positives. Despite these
numbers, we observed that techniques perform consistently
with and without feature models (results discussed in previous
sections). Considering the crash scenarios of GCC, we observed
that all crashes found manifested in valid configurations,
indicating that the use of validation is not beneficial. (We
used GCC constraints documented in a previous study we
conducted [49].) Considering the scenarios of failures of GCC,
we also observed that the techniques performed consistently
with and without feature constraints.

D. Threats to Validity and Limitations

The main threats to validity are as follows. External
Validity: The selection of subjects we used may not generalize
to other cases. To mitigate this threat, we used subjects from
a variety of sources, including a large configurable system
with hundreds of options. Internal Validity: Eventual errors
in our implementation could invalidate results. To mitigate
this threat, we thoroughly checked our implementation and
our experimental results, looking for discrepancies that would
signal potential errors. Our datasets and implementations are
publicly available [48]. One limitation of the study relates
to the fact that SPLat currently only supports systems with
dynamically bound feature variables (e.g., Groupon web [8],
[29], and GCC [5]). It remains to investigate how SPLat and
S-SPLat would perform on systems with #ifdef variability.

E. Discussion

While combination c2 was the only technique that found
all crashes with a relatively low number of configurations, it
seems that the combination c7 performs even better considering
all the experiments we analyzed, including those with SPLs.
This combination detected most failures and crashes through a
relatively small number of configurations. Recall that this is the
combination that includes all basic techniques but pairwise

and random. This confirms results obtained by Medeiros et
al. [38] showing the superior performance of this combination.
Overall, the results we obtained suggest that it is preferable
to combine different simple heuristics instead of using one
that entails a larger number of test requirements. We remain
to explore alternative heuristics not considered in this study.
However, our initial results, indicate that the hybrid search
proposed by S-SPLat is promising to reveal errors in potentially
large configuration spaces.

In addition to the experiment documented above, we run two
other experiments, whose results we summarize below. We (1)
compared S-SPLat to Regular Sampling and we (2) evaluated
S-SPLat with random sampling using different sampling rates
(10% and 30% in addition to the default rate of 50%). For the
first experiment, Regular Sampling detected the same bugs as

S-SPLat but it required more configurations. Recall that Regular
Sampling techniques are black-box, they explore precomputed
configurations regardless if they are reachable by test executions
or not whereas S-SPLat only explores configurations that both
satisfy sampling heuristics and are reachable from tests. In
the second experiment, we found that the results obtained are
proportional to the change in the sampling rates of random.
Additional results can be found on our website [48].

VI. RELATED WORK

Sound Techniques. Sound techniques can be divided
in two categories according to their execution mode.
Multi-execution approaches, such as DeltaExecution [18],
SharedExecution [28] and Varex [41], execute a given test
simultaneously against sets of configurations; they leverage
the similarities that exist across configurations to reduce the
total number of paths explored in a test and the overall
amount of computation. One multi-execution is typically more
expensive than a regular execution but the overall execution
compensates provided that enough similarity exist across
each regular execution. Single-execution approaches, such as
SPLat [29], [49], in contrast, execute a test once for each
reachable configuration that they discover while building a
decision tree from configuration variables accessed during
execution. Several aspects need to be taken into consideration
for choosing one approach or the other. For example, a tension
between engineering-related limitations and computational cost
exists between these approaches. On the one hand, building
(and maintaining) such interpreters is challenging, especially
for statically-typed languages [18], [28], [45]. Implementations
for dynamically-typed languages exist but still suffer from
important limitations (e.g. [41, § 3.2.4]). On the other hand,
single-execution approaches can be expensive as they are
unable to detect potential redundancies in computations across
configurations. This paper focused on the single-execution
technique SPLat but, in principle, sampling could also be
combined with multi-execution approaches.
Sampling. Abal et al. [11] analyze the Linux kernel soft-
ware repository to study configuration-related faults fixed by
developers. They manually analyze the characteristics of 42
configuration-related faults and suggest using the one-disabled

sampling algorithm to find bugs. Perrouin et al. [44] and
Marijan et al. [37] use the t-wise sampling algorithm to cover all
t configuration option combinations. Tartler et al. [50] propose
the statement-coverage sampling algorithm and applied a per-
file analysis to detect bugs in the Linux kernel. However, none
of them perform a comparative study to understand the fault-
detection capability and effort (size of sample set) of sampling
algorithms different from our work using S-SPLat. Liebig et
al. [33] perform studies to detect the strengths and weaknesses
of variability-aware and sampling-based analyses (single con-
figuration, pair-wise and code-coverage). They considered two
analysis implementations (type checking and liveness analysis)
and applied them to a number of subject systems, such as
BusyBox and the Linux kernel. The variability-aware analysis
outperforms most sampling heuristics with respect to analysis
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time while preserving completeness. We do not evaluate
runtime of our algorithms. Song et al. [46] propose interaction
tree discovery algorithm (iTree) to support the testing of highly
configurable systems. iTree selects a subset of configurations in
which the execution of the system’s test suite will achieve high
coverage. They found that iTree can identify high-coverage sets
of configurations more effectively than traditional combinatorial
interaction testing or random sampling. Apel et al. [14] have
developed a model-checking tool for C and Java product
lines. They compare sample-based and family-based strategies
with regard to verification performance and the ability to find
defects. They found that triple-wise outperformed pairwise

sampling and that the family-based strategy outperformed
all sampling-based strategies in terms of detection efficiency.
Later, Medeiros et al. [38] conducted an extensive comparative
study of 10 sampling algorithms (5 variations of t-wise,
statement-coverage, random, one-disabled, one-enabled, and
most-enabled-disabled) regarding their fault-detection ability
and size of sample sets in the Linux kernel, Apache, and
other real C program families. They also analyzed combina-
tions of these algorithms. They found that, in most cases,
most-enabled-disabled is the most efficient. In our work,
we observed that, considering SPLs, one-disabled and the
combination heuristic c11 offered the best balance between
efficiency and effectiveness in most cases. Considering GCC,
most-enabled-disabled and the combinations of one-enabled

and one-disabled (e.g., c7) offered the best balance.
Static Analysis. Kim et al. [26] previously developed a static
analysis to determine which features are relevant to the outcome
of a test. Conceptually, it enables one to run a test only on
(all valid) combinations that involve relevant configuration
variables. Despite the positive results reported by Kim et al.
(caveat: evaluation involved large subjects but tests cover only a
small fraction of the code), it is important to note that obtaining
reachability information for these systems per test is challenging
as: (i) the analysis needs to (re)run for each test, (ii) the analysis
needs to run whenever the program changes, and (iii) often tests
are designed to statically reach the entire codebase (e.g., system
tests) – i.e., only the test input data can discriminate which parts
of the code will be actually executed [47]. It is important to
note that obtaining dynamic reachability information efficiently
is the key feature of SPLat [29], which built upon the ideas of
Kim et al. [26]. Note also that the use of static or dynamic
reachability analysis is an orthogonal aspect of this work. In
the future, we plan to empirically evaluate other methods to
compute reachability information.
Other. Recent empirical study found evidence that practical
configuration complexity is often much lower compared to
theoretical configuration complexity [40]. The intuition is
that, even if multiple variables are accessed in a given test,
configuration complexity may not be unacceptably high. For
example, variables may not interact with each other or may
interact according to specific patterns. The observation of this
phenomenon enables techniques that leverage the similarities
across executions of a test to reduce dimensionality of the
search space and test execution to scale. The contribution of

variability-aware execution is orthogonal to ours: it is possible
to combine sampling even with variability-aware execution
(sound by definition) as to explore more exhaustively only cer-
tain parts of the decision tree. Hybrid concolic execution [21],
[36] is a variant of concolic execution that aims to explore the
state space more broadly and deeply compared to a regular
concolic execution, which conceptually can get stuck (e.g., as
observed with saturation in coverage) in dense branches of the
symbolic tree. The principle of seeking more uniform search
has various manifestations in software testing; it is motivated
by the assumption that bugs are uniformly distributed in the
state space. Note that the goal of (hybrid) concolic execution
is test input data generation whereas our goal is configuration
selection. Furthermore, the heuristic component of their hybrid
search only uses randomization (as to make jumps during
symbolic execution) whereas we evaluated different sampling
heuristics. Despite these difference both techniques approach
the problem of searching a large search space by dropping
guarantees of a systematic search for the sake of practicality.

VII. CONCLUSION

We presented S-SPLat, a technique for testing configurable
systems that blends heuristic sampling and symbolic search
to obtain both breadth and depth in the exploration of the
configuration space. S-SPLat builds on SPLat, our previously
developed technique, that explores all reachable configurations
from tests. Results obtained on several subjects are encouraging.
For example, S-SPLat could find all the bugs that SPLat pre-
viously found on GCC, release 4.8.2, but faster. Furthermore, it
found new bugs in a newer release of GCC. Implementation and
experimental infrastructure can be found on our website [48].
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