Accepted Manuscript

Efficient static checker for tainted variable attacks

Andrei Rimsa, Marcelo d’ Amorim, Fernando Magno Quintao Pereira,
Roberto S. Bigonha

PII: S0167-6423(13)00073-7
DOI: http://dx.doi.org/10.1016/j.scico.2013.03.012
Reference: SCICO 1532

To appear in: Science of Computer Programming

Received date: 15 December 2011
Revised date: 9 October 2012
Accepted date: 23 March 2013

Please cite this article as: A. Rimsa, M. d’ Amorim, EM. Quintdo Pereira, R.S. Bigonha,
Efficient static checker for tainted variable attacks, Science of Computer Programming (2013),
http://dx.doi.org/10.1016/j.scico.2013.03.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2013.03.012

Efficient Static Checker for Tainted Variable Attacks

Andrei Rimsa®, Marcelo d’AmorimP, Fernando Magno Quintao Pereira?,
Roberto S. Bigonha?

*UFMG - Av. Anténio Carlos 6627, 31.270-010, Belo Horizonte, Brazil
b UFPE - Av. Jornalista Anibal Fernandes S/N, 50.740-560, Cid. Universitdria, Recife,
Brazil

Abstract

Tainted flow attacks originate from program inputs maliciously crafted to
exploit software vulnerabilities. These attacks are common in server-side
scripting languages, such as PHP. In 1997, Orbaek and Palsberg formalized
the problem of detecting these exploits as an instance of type-checking, and
gave an O(V?) algorithm to solve it, where V is the number of program
variables. A similar algorithm was, ten years later, implemented on the
Pixy tool. In this paper we give an O(V?) solution to the same problem.
Our solution uses Bodik et al.’s extended Static Single Assignment (e-SSA)
program representation. The e-SSA form can be efficiently computed and
it enables us to solve the problem via a sparse dataflow analysis. Using
the same infrastructure, we compared a state-of-the-art dataflow solution
with our technique. Both approaches have detected 36 vulnerabilities in
well known PHP programs. Our results show that our approach tends to
outperform the dataflow algorithm for larger inputs. We have reported the
new bugs that we found, and an implementation of our algorithm is publicly
available at https://github.com/rimsa/tainted-phc.git.

Key words: Tainted flow analysis, security vulnerability, static analysis.

Email addresses: rimsa@live.com (Andrei Rimsa), damorim@cin.ufpe.br (Marcelo
d’Amorim), fernando@dcc.ufmg.br (Fernando Magno Quintao Pereira),
bigonha@dcc.ufmg.br (Roberto S. Bigonha)

Preprint submitted to Elsevier April 1, 2013

1. Introduction

Web applications, so pervasive in the Internet, often manipulate sensitive
information. It comes to no surprise that these applications are usual targets
of cyber attacks [1]. These attacks typically initiate with a remote individual,
the attacker, carefully forging inputs to corrupt a running system.

An important class of cyber-attacks is known as Tainted Flow Attacks.
It manifests when a remote individual explores potential leaks in the system
via its public interface. For the most popular cases, the interface is a web
service and the vulnerability is the lack of “sanity” checks on user-provided
data before using that data on sensitive operations. Many web vulnerabili-
ties are described as Tainted Flow Attacks; examples include: SQL injection,
cross-site scripting (XSS), malicious file inclusion, unwanted command exe-
cutions, eval injections, unvalidated redirects, cross-channel scripting (XCS),
and file system attacks [1, 2, 3, 4, 5]. To detect these kinds of attacks one
needs to answer the following question: does the target program contain a
path on which data flow from some input to a sensitive place without going
through a sanitizer function? A sanitizer is a function that either “cleans”
malicious data or warns about their potential threat. We call the previous
question the Tainted Flow Problem. The Open Web Application Security
Project ! classifies three of these vulnerabilities, e.g., SQL injection, XSS,
and unvalidated redirects, among the top ten security vulnerabilities found
in web applications [5]. Furthermore, the annual SANS’s report? estimates
that SQL injection happened approximately 19 million times in July of 2009
only. Therefore, detection of potential vulnerabilities in web applications is
an important problem.

The tainted flow problem was formalized by Orbaek and Palsberg in 1997
as an instance of type-checking [6]. They proposed a type system to the
typed A-calculus, and proved that if a program type-checks, then it is free
of tainted flow vulnerabilities. Ten years later, Jovanovic et al. provided an
implementation of an algorithm that solves the tainted flow problem for PHP
4.0 in the Pixy tool. This algorithm was a dataflow version of Drbaek and
Palsberg’s type system. It has an average O(V?), and a worst case O(V*?)
runtime complexity. @Orbaek and Palsberg’s solution, when seen as a dataflow
problem, admits a worst case O(V?) solution [6, p.30].

http://owasp.org
’http://wuw.sans.org/top-cyber-security-risks/origin.php

This paper improves on the complexity of these previous results. The time
and space complexity of the algorithm that we propose is, in the worst-case,
quadratic on the number of variables in the source program. Key to achieve
this lower complexity is the use of a program representation introduced by
Bodik et al. [7] known as Extended Static Single Assignment (e-SSA). This
representation can be computed in linear time on the program size and was
originally proposed to eliminate array bound checks for Java programs. We
describe the first attempt to use this representation to perform tainted flow
analysis. As we will explain in Section 3.1, dataflow analyses usually store
information associated with each variable at each program point, i.e., a point
between consecutive instructions. An instruction might cause this informa-
tion to change from one program point to the next; however, these changes
usually are restricted to a single variable. The rest of the data associated
with the other variables is redundant information. The e-SSA representa-
tion allows us reduce the amount of redundancy. Each variable is defined at
most once, and the information associated with a variable is invariant along
its entire live range; thus, we can bind this information irreversibly to the
variable name. This paper brings forward the following contributions:

e An efficient algorithm to solve the tainted flow problem. A distinguish-
ing feature of this algorithm is the use of the e-SSA representation to
generate constraints. See Section 4.5.

e An implementation of the algorithm on top of phc [8, 9], an open
source PHP compiler 3. Our implementation of e-SSA is now part of
the compiler’s official distribution.

e An evaluation of the proposed approach on public PHP applications,
including benchmarks used in previous works [10, 11, 3], and the con-
sequent exposure of previously unknown vulnerabilities. See Section 5.

Our analysis can be generalized to other procedural languages. We have
chosen PHP for two reasons. First, it is popular: PHP programs can be
found in over 21 million Internet domains*. Second, it has been the focus
of previous research on detection of vulnerabilities [10, 11], and benchmarks
are easily available.

3http://wuw.phpcompiler.org/
“http://php.net/usage.php

2. Examples of Tainted Flow Attacks

A tainted flow attack is characterized by a subpath from a source to a
sink function that does not include calls to sanitizing functions. A source
function reads information from an input channel (e.g., from an HTML form)
and passes it to the program. Sinks are functions that perform sensitive op-
erations, such as writing information into the program’s output channel (e.g.,
to a dynamically-generated webpage). Sanitizers are functions that protect
the program. For instance, checking whether some untrusted information
is safe, removing malicious contents from tainted data, or firing exceptions
when necessary. The literature describes many kinds of tainted flow attacks;
in this section, we explain two of these vulnerabilities in more detail: cross
site scripting and SQL injection.

2.1. Cross-Site Scripting (XSS)

A cross-site scripting attack occurs when a user prints HTML con-
tent into a dynamically-generated page. An attacker uses this vulner-
ability to inject JavaScript code into the page, usually trying to steal
cookie information to acquire session privileges. The program below
illustrates this situation. In this case, the user provides the input
“<script>does.something.evil;</script>” to the variable name:

<7php $name = $_GET[’name’]; echo $name; 7>

Note that a malicious JavaScript program could have been passed as argu-
ment instead of the text does.something.evil. Considering the command
echo in PHP would evaluate its script argument, the negative consequence
could be proportional to the script’s knowledge and intent. A workaround for
this threat is to strip HTML-related data from the user input. The function
htmlentities, shown below, does the trick by replacing special characters
with their HTML representations, e.g., this function replaces the symbol “<”
by “&1t;”. There exist public libraries that perform this type of sanitization
(e.g., http://code.google.com/p/closure-templates/).

<?php $name = htmlentities($_GET[’name’]); echo $name; 7>

Cross-site scripting attacks fit into the tainted flow problem framework. A
possible input configuration, in this case, would be:

Sources : $_GET, $_POST, ...

Sinks : echo, print, printf
Sanitizers : htmlentities, htmlspecialchars, strip_tags

2.2. SQL Injection Attacks

SQL injection is another common type of tainted flow attack. In this case,
an adversary uses the parameters of SQL queries to manipulate a database.
The effect can go from reporting incorrect results to the user to modifying
database contents. The program below contains a vulnerability of this kind.

<7php
$userid = $_GET[’userid’];

$passwd = $_GET[’passwd’];
$result = mysql_query("SELECT userid FROM users WHERE
userid=$userid AND passwd=’$passwd’");
7>
Note that this program does not sanitize its inputs. A malicious
user could obtain access to the application by providing the text
“1 OR 1 =1 --" in the userid field. The double hyphen starts a com-

ment in MySQL. The following query is obtained with the input variables
replaced: SELECT userid FROM users WHERE userid=1 OR 1 = 1 -- AND
passwd=’ANY PASSWORD’. The execution of this query bypasses the authen-
tication procedure, as the expression 1 = 1 is always true.

A workaround for this threat is to sanitize the variable userid to ensure
that it only contains numerical characters; a task that we perform either
casting it to integer or checking its value with functions like is_numeric. One
can sanitize variable $passwd using the addslashes function, which inserts
slashes (escape characters) before a predefined set of characters, including
single quotes. A typical configuration of SQL injection is given below:

Sources : $_GET, $_POST, ...
Sinks : mysql_query, pg_query, *_query

Sanitizers : addslashes, mysql_real_escape_string, *_escape_string

3. Formal Definition and Previous Solution

Nano-PHP. We use the assembly-like Nano-PHP language to define the
tainted flow problem. A label [€ L refers to a program location and is
associated to one instruction. A Nano-PHP program can be represented as
a sequence of labels l1;ls; ... ; l.z. Figure 1 shows the six instructions of the
language. We use the symbol ® to denote any operation that uses a sequence
of variables and is used in the context of a variable definition.

Semantics. We define the semantics of Nano-PHP programs with an abstract
machine. The state M of this machine is characterized by a tuple (3, F, I),
informally defined as follows:

Store ¥ : Var — Abs e.g., {x; — clean, ..., z, — tainted}
Code Heap F': L — [Ins] eg, {li—i1...0, .., ly— iy}
Instruction Sequence I : [Ins] e.g., iplg ... 1Ip

The symbol Var denotes the domain of program variables. The symbol
Abs denotes the domain of abstract states {L,clean, tainted}. A variable
that stores the abstract value L is undefined, clean indicates the variable
is clean (i.e., protected against tainted attacks), and tainted indicates that
the variable may be used to create a tainted attack. The store X binds each
variable name, say x € Var, to an abstract value v € Abs. The code heap F
is a map from a program label to a sequence of instructions. Each sequence
corresponds to one basic block from the Nano-PHP program. Only labels
associated to entry basic block instructions appear in F. The list I denotes
the next instructions for execution. We say that the abstract machine can
take a step if from a state M it can make a transition to state M'. More

Name Instruction Example from PHP

Assignment from source | x = o $a = $_POST[’content’]

Assignment to sink o= echo ($v)

Simple assignment x=Q(x1,...,Tn) $a = $t1 * $t2

Branch braly,..., I, general control flow

Filter r1 = filter $a = htmlentities($t1

Validator validate z,l., [; if ('is_numeric($1))
abort();

Figure 1: The Nano-PHP syntax.

[S-SOURCE] (3, F,x = 0;5) — (X\[z — tainted], F, S)

Y F v = clean

[S-SINK] (3, F,e=u;5) — (X, F,9)
YUz, .. m,) =0
[S-SIMPLE] (X, Fx=®(x1,...,24);5) — (X\[z — 0], F, S)
{l;} C dom(F) F(l;) =5 1<i<n
[S-BRANCH] (3, F,braly,...ly;S) — (X, F, 5"
[S-FILTER] (3, F,z = filter;S) — (X\[z — clean], F, S)

Y 2 = clean {lc} € dom(F) F(l,)=5
[S-VALIDC] (3, F,validate(z,l.1;);S) — (X, F,5)

Y 2 = tainted {l;} € dom(F) F(l,) =5
[S-VALIDT] (3, F,validate(x,l.,14);S) — (X, F,S")

Figure 2: Operational semantics of Nano-PHP.

formally, we write M — M’. We say that the machine is stuck at M if it
cannot make any transition from M.

Figure 2 illustrates the transition rules describing the semantics of Nano-
PHP programs. Rule S-SOURCE states that an assignment from source binds
the left-hand side variable to the tainted abstract state. Rule S-SINK is the
only one that can cause the machine to get stuck: the variable on the right
hand side must be bound to clean in order to execute a safe assignment
to sink. Rule S-SIMPLE says that, the new store of variable x after an
assignment of the form x = ®(z1, xs, ..., ,) is obtained by folding the meet
operation (as described in Table 1) across the elements of the list of variables
in the right-hand side of the expression, i.e.: 1 A zo... A x,. This rule
conservatively propagates the tainted information to the new definition of x:
if at least one of the variables used, e.g., x;, 1 < i < n, is tainted so will be the
new store of x. Rule S-BRANCH defines a non-deterministic branch choice:

A 1 clean | tainted

4L L clean | tainted
clean clean clean | tainted
tainted | tainted | tainted | tainted

Table 1: Meet operator over pairs of abstract values.

the machine chooses one target in a range of possible labels and branches
execution to the instruction at this label.

Nano-PHP organizes the sanitizer function in two groups: filters and
validators. Filters correspond to functions that take a value, typically of
string type, and return another value without malicious fragments from the
input. For simplicity we do not show the input parameter in the syntax
of Nano-PHP. Rule S-FILTER shows that an assignment from a filter binds
the variable on the left side to the clean state. We can use this syntax to
define assignments from constants (e.g., v = 1). Validators are instructions
that combine branching with a boolean function that checks the state for
tainting. The instruction validate(z,[.,[;) has two possible outcomes. If x
is bound to the clean state, the machine branches execution to F'(l.). If x is
bound to the tainted state, execution branches to F(l;). Again, we omit the
boolean function itself from the syntax for simplicity. Rules S-VALIDC and
S-VALIDT define these cases. We assume that in any Nano-PHP program
every variable must be defined before being used; therefore, we rule out the
possibility of passing x to a validator when ¥ -z = L.

Important consideration about functions. In this paper we describe an in-
traprocedural analysis. Thus, we conservatively consider that input parame-
ters and the return values of called functions are all definitions from source.
A context insensitive, interprocedural version of the proposed algorithms can
be produced by creating assignments from actual to formal parameters.

The problem. We define the tainted flow problem as follows.
Definition THE TAINTED FLOW PROBLEM

Instance: a Nano-PHP program P.
Problem: determine if the machine can get stuck
while executing P.

3.1. Data Flow Analysis.

Given a Nano-PHP program, we can solve the tainted flow problem using a
forward-must data flow analysis. We define a lattice (Abs, <) by augmenting
the set Abs with the ordering 1 < clean < tainted. Table 1 shows the meet
operator A over this lattice. The map lattice (Var — Abs, <’) is obtained
with the typical lifting of the lattice associated to Abs. Recall that the set
Var is finite. We represent dataflow information with the function [.] : L —
L — Var — Abs. This function associates to each program point (I, 1) a map
storing the abstract values of variables. We use the notation [l1, ls] to denote
information at (I1,ly). It abbreviates the function application ([_]i;)ls. We
prefer to associate our transfer functions to pairs of labels, instead of to the
IN and OUT sets of more classic approaches, to simplify the description of
a path sensitive analysis. In this way we can bind information directly to
the edges of the control flow graph, and an instruction such as validate can
generate different information at different edges.

Table 2 defines the transfer functions (Var — Abs) — (Var — Abs)
associated to each instruction. The initial state of the analysis associates
undefined to all program variables at every point, i.e., [[] = Ay . Ay . Av . L.
We let PRED(I) be the set of labels [; immediately before label [, and define
the auxiliary function Meet as follows:

Meet(1) = A\[l.,1] , 1 € PRED(])

Given two functions [k,k] and [I',l], we define A {[K, k],[V,]} as
A ([K E]o) A (U, 1]v), with A given by Table 1. The combined transfer
function tr : [.] — [.] is defined as usual with the composition of all indi-
vidual transfer functions. Function ¢r admits fix-points as the lattice is finite
and all individual transfer functions are monotone [14, Ch.9].

The meet operation denotes accumulation of information across control
flow edges. In this case, information flows from the predecessor edges of a
node. Note that we define operation Meet over a map lattice. Informally, the
semantics of this operation is to apply A over elements on the image of the
functions according to the definition in Table 1. For example {x + clean, y +—
clean}A{x — tainted,y — L} = {x — cleanAtainted, y — cleanA_L}. Notice
that this dataflow system is path-sensitive, given the way that we handle
validate x,l., ;. Information flows differently to each successor label, [. or
l;, depending on the parameter x been clean or tainted.

instruction -]
1 r =0 [l,14] = Meet(l) \ [z — tainted]
2 o=z [l,14] = Meet(l)
3| x=&(@1,...,2n) | [I,1+] = Meet(l) \ [z — Meet(l)(z1) A ...\ Meet(l)(xy)]
4 bra lq,...,l, Vi, 1 <i<mn,[l, ;] = Meet(l)
5 x = filter [l,14] = Meet(l) \ [z — clean]
¢ | validate z,l., ! [1,1.] = Meet(l) \ [z — clean], [I,1;] = Meet(l)

Table 2: dataflow equations to solve the Tainted Flow Problem.

If USE(x) is the set of instructions where variable = is used, then we
say that an instruction i influences a variable v if either 7 defines v, or ¢
defines x, and some instruction i € USE(z) influences v. The dataflow
equations provide the invariant stated in Theorem 3.1. We flag a security
vulnerability if a Nano-PHP program contains an instruction [: ¢ = v, and
[1,1:](v) = tainted.

Theorem 3.1. If [l1,05](v) = tainted, then v is created by an instruction
influenced by an assignment from source.

Figure 3 shows the result of a dataflow analysis. We let DB to denote a
global database, and we assume that DB.get might produce tainted data.
The function DB.isMember works as a validator. We have replaced a call to
DB.hasParent by the simple branch at g, as this operation does not create
new data. Similarly, we have replaced the call to DB.getParent by v = ®(v).
Because our instruction set does not contain a halt, we use g, a label jumping
to itself, to mark the end of the program. We show the maps produced by the
dataflow analysis on the edges of the Nano-PHP program. In this program
the dataflow analysis obtains a fix-point in two iterations. The example
contains a tainted flow vulnerability, given by the path Iy — I5 — lg — [3.
At 4 we read variable z, e.g., $x = $_POST[’$v’], and at I3 we feed it to
a sink function, e.g., echo($x). Note that variable v cannot be used in a
tainted flow attack, because it is sanitized by the function DB.isMember.

10

lpx=filter «<—— [:v=0
A1 Viintea)

X cteand| Viainted)
<?php
$v = DB.get ($_GET['child']); L,:validate (v, Iy) [:v =@ (v)
$x = nn,
if (DB.isMember ($v)) { {Xuinteas Vaineea?

while (DB.hasParent ($v)) {
echo ($x) ;
$x = $_POST['$v'];
Sv DB.getParent ($v) ;

}

echo ($v) ;

}
?>

{Xainted] Vetean)

Xeainteas Vetean)
tainted> " clean 14: x=o0

Figure 3: A simple PHP program (left), and its equivalent Nano-PHP version
(right), augmented with the result of dataflow analysis.

Complexity.. We can solve this dataflow analysis using the chaotic iteration
model [15]. If the CFG of the input program has I instructions and V' vari-
ables then we can perform O(I x V) iterations. Each union is O(V), and
we may have O(I) unions per iteration. Thus, our dataflow analysis has
complexity O(V? x I?). However, it is possible to speedup the algorithm
executing the transfer functions in a topological order of the program’s dom-
inator tree [15]. In particular, Palsberg [16] gives an O(V?) type-inference
algorithm that solves the tainted flow problem. In practice, this dataflow
analysis is O(V x I) [15, p.209].

4. The Proposed Solution

This section describes our proposed solution to the tainted flow problem.
Our approach is organized in three parts as described below.

1. Convert the input program to the Fxtended Static Single Assignment
(e-SSA) form. The construction of the dominator tree is O(Va(V)),
where V' is the number of variables in the source program and « is the
inverse Ackermann function, normally regarded as constant, and the
insertion of ¢-functions is O(V?), yet linear in practice [15, p.408].

2. Traverse the e-SSA-form program collecting use-chains: O(V).

11

3. Use the algorithm in Figure 8 to find tainted flow vulnerabilities:
O(V?), but O(V) in practice.

4.1. E-SSA form is key to Fast Path-Sensitive Tainted Flow Analysis

We use the Extended Static Single Assignment (e-SSA) representation to
simplify our tainted flow analysis. The e-SSA program representation is a
superset of the well known Static Single Assignment (SSA) form [17]. This
representation has been used by Bodik et al. [7] to eliminate array bound
checks. Its main advantage, in our case, is the possibility of acquiring useful
information from the outcome of conditional tests, and then binding this
information directly to variables, instead of pairs of variables and program
points. We convert a Nano-PHP program to e-SSA form using the algorithm
below:

1. For each instruction ¢ = validate x, [, [;:
(a) replace i by a new instruction validate x, ., .z, l;, where z,
and x; are fresh variables;
(b) rename every use of x dominated by I. to x.. A label [dominates
a use of variable z at label [, if, and only if, every path from the
program’s entry point to [, goes across [.
(c) rename every use of dominated by [; to xy;
2. Convert the resulting program into SSA form. For a fast algorithm,
see Appel and Palsberg [15, p.410].

In order to represent Nano-PHP program in e-SSA form, we modify the
syntax of this language in two ways. First, we add ¢-functions to the
language. These special instructions are an abstraction first introduced
by Cytron et al. [17] to represent SSA-form programs. ¢-functions are
used at control-flow join points, and they receive as parameter one vari-
able name associated to each control-flow predecessor. A ¢-function such as
xn, = (x1,...,%y), placed at label [has the effect of assigning z;,1 <i <m
to x,, depending on which predecessor of [was last visited before execution
reaches [. The use of a variable in SSA-form programs is associated to only
one definition. Thus, to convert a program into the SSA form, we rename
each definition of a variable v to a different name, and join definitions of v
that are alive at a common program point by ¢-functions. These new ¢-
functions produce fresh definitions of v; thus, the process continues until the

12

program stabilizes. There exist almost linear time algorithms to convert pro-
grams to SSA-form [18]. E-SSA-form programs are also SSA-form programs;
thus, they have the property that each variable has only one definition.
E-SSA-form programs are also SSA-form programs: they also have the
property that each variable has only one definition. The difference is that
while SSA merges live-ranges of many related variables at the point of a
merge of conditional branches, e-SSA, in addition, splits the live-ranges of
one variable at the point of a conditional branch. In result, the e-SSA rep-
resentation provide path-sensitiveness as it allows one to obtain static infor-
mation more precisely from the outcome of conditionals. Operationally, we
modified the syntax and semantics of the validator instruction. The syntax
becomes validator (z,x.,l., z¢, ;) °; the semantics we show below.

Y F 2 = clean {lc} € dom(F) F(l.) =9
[S-EssaC] (X, F,validate(x, z., ¢, 2¢,1¢); S) — (X \ [z, — clean], F, S")

Y b 2 = tainted {l;} C dom(F) F(l;) =5
[S-EssAT] (X, F,validate(x,x., ¢, 24,0¢);.5) — (X \ [z — tainted], F, S")

The validator splits the live range of variable x in two parts, depending
on whether or not its abstract value is tainted. Note that when converting a
program into e-SSA form, we rename every use of x in labels dominated by
l. to x., and rename every use of x in labels dominated by I; to x;. The new
instruction has the following semantics: Rule S-ESSAC says that a validator,
upon receiving a clean variable z, guarantees that the variable will be clean
henceforth. Given that every use of x dominated by [. has been renamed to
x. beforehand, we simply continue the program execution in an environment
where . is bound to clean. Rule S-ESSAT does the opposite: if a validator
fails on a variable x, we know that x is tainted; hence, we continue the
program execution in an environment where z; is bound to tainted.

Figure 4 illustrates that e-SSA enables one to associate unique constraints
to variables, as opposed to program points. The original program in Figure 3
contains two variables, z and v. We know that these variables are clean in
some program points, but not in all. The e-SSA representation allows us

®Bodik et al. use special instructions called m-functions to create x. and x; [7]

13

l:x;=filter «<——————[:v,=0

lq~' Xg = & (X}, Xy)

L:validate (v, vy, Iy, vy, lg) ——>
? O e e e 58 Vg = ¢ (Vs Vs)

<« [5:v; =® (vy)

Iy bra I l;:bra I, [,

— |

L:e=v, [reo=xy ———— > [, x,=0

Figure 4: The example from Figure 3 converted into e-SSA form. Note the
difference in validate and that information is not associated to the edges
of the graph.

to identify these program points precisely. The modified program has five
variables created after v: {vg, vs, Vg, Uae, V2t }, plus three variables created after
x: {x1,24,29}. Let’s consider the first group of variables. Given that v, is
produced by source assignment, we know that it is tainted. Variable vy, must
be necessarily clean, as it is produced by the validation of vg. On the other
hand, v9; must be necessarily tainted, for the opposite reason. Variable vs,
which results from the application of an operation — assignment — on a clean
variable, is also clean. Finally, vg, which may be assigned either a clean or
a tainted value, is tainted, as this is the most conservative choice to detect
security vulnerabilities.

4.2. Tainted Analysis as Graph Reachability

Given a Nano-PHP program P, we represent it as a graph G, in which
each node n, € G denotes a variable v € P. We build the reachability graph
directly from the e-SSA-form Nano-PHP program. Fach particular type
of instruction produces a specific configuration of nodes in the reachability
graph, as Table 3 shows. Roughly, there is an edge linking n, to n, if
information flows from variable u to v. Notice that, were it not for filters
and validators, our reachability graph would represent the def-use chains of
the Nano-PHP program. The program from Figure 4 gives origin to the
reachability graph in Figure 5.

14

Vs, V) : Xy filter

i

i]

i i

1 i

i i

! i
- |

validator fp------ <>—> Ve source X <—<><;x1

Vs Vg @ ----- sink

Figure 5: The reachability graph built after the program in Figure 4.

Instruction Example Nodes
D0t
V=0 $v = $_POST[‘id’]
e
e =7 echo ($V)
$tl
$
$t2> 2
v=®(©,...,v2) $a = $t1 * $t2
6—>$a
v = filter $a = stripslashes($t)
1
sv — e
Sv2
v=0(v1,...,02) $v = phi($vi, $v2)
$i—%<>—9$i2
v !
o
validate (v, v, le, Vg, lt) if (is_num($i))

Table 3: Mapping program instructions to nodes in the reachability graph.

Below we rephrase the tainted flow problem as an instance of graph reach-

ability. The traversal of the reachability graph is related to the notion of pro-
gram slicing [19]. Any node u that reaches a node v is part of the program

slice that defines the behavior of v.
Definition THE TAINTED FLOW PROBLEM AS GRAPH REACHABILITY

15

Instance: a graph G that describes a Nano-PHP program P.
Problem: determine if G' contains a path from a source to a sink that
does not cross any sanitizer.

4.3. Handling Arrays and Class Fields

Our analysis is field sensitive. The phc compiler gives us enough infra-
structure to distinguish assignments to different fields inside an object. Thus,
we can handle fields in the same way that we handle ordinary variables. The
treatment of arrays is more complicated. In PHP, arrays can be indexed with
either integers or strings, can grow and shrink dynamically and may not be
contiguous. Array cells can also store composite types such as other arrays °.

The phc compiler provides a def-use chain for array elements. The com-
piler tracks assignments to array indexes the same way as done for scalar
assignments. If an assignment uses a constant statically known to index an
array, e.g., POST["name"] = 1, then we can treat the pair (_POST, "name")
as a single variable. We consider the array itself, e.g., POST as clean, since
it cannot be directly used in an attack. Nevertheless, there are cases when
we are unable to statically determine the value used to index an array, e.g.,
_POST[N] = 1.

When reading an array element with an unknown index, we check when-
ever we already inferred any element of this array as tainted. In this case, we
conservatively consider this array access as tainted in order to avoid missing
true positives, otherwise we consider it clean. When writing to an unknown
position of an array we check whenever we are assigning a tainted value to it.
If that is the case, then we conservatively mark every element of this array
as tainted. Otherwise we ignore the assignment and the analysis continues.
Although this strategy may increase the number of false-positives, it is better
than treating the entire memory heap as a single unit.

4.4. Addressing Aliasing with HSSA

Aliasing is a phenomenon typical of imperative languages, in which two
names reference the same memory location. Aliasing complicates static anal-
yses because it requires the analyzer to understand that updates in the state
of a variable may also apply to other variables. To see the implications of
aliasing on tainted flow analysis, let’s consider the PHP program in Figure 6

Shttp://www.php.net/manual/en/language.types.array.php

16

$i = $ GET['var'] Lijy &=y <—— lziy=o [sfeET['var']j [!lsfclean]

$J =5 $i l: validate (i, joo Ly jon I3) é

. - echo : $j1‘>v
i IS @
/

$j = filter($i); . - .‘ $i0 $52t $32¢
} L js= ¢ (oo J3)

echo ($1) ; L=ty ————< ——>$33—>$34

Figure 6: An example of how aliasing complicates the tainted flow analysis.
In the right side we show the reachability graph built for the e-SSA form
program.

(Left). Assuming that $_GET is a source and echo is a sink, then the program
is logically bug free. That is, the name $i, which is used in a sink, has been
sanitized as name $j, because both names, $i and $j represent the same
variable. The ordinary e-SSA representation will not catch this subtlety, as
Figure 6 shows. There is a clear path from $i0 to the sink that does not go
across any sanitizer.

In order to deal with aliasing we use an augmented flavor of the e-SSA
representation, that we derive from a representation called Hashed Static
Single Assignment (HSSA) form [20]. This last program representation is
used internally by phc [8, Sec 6.5], our baseline compiler. For each assignment
v = F in a SSA-form program, the equivalent HSSA-form program contains
an assignment (v, as, ..., a,) = E, where aq,...a, are the aliases of v at the
assignment location. Following this strategy, our augmented representation
generates new names for each variable created by a sanitizer. The literature
contains a plethora of methods to conservatively estimate the set of aliases
of a variable. We use the flow sensitive, interprocedural analysis [21] that we
obtain from phc. Moving on with our example, Figure 7 shows the program
and the reachability graph after augmenting the e-SSA form program in
Figure 6 with the results of alias analysis. In the new reachability graph
there is no path from a source to a sink that does not go across a sanitizer.
Thus, we report that the program is bug-free.

17

l: validate (i, {faoizds Lo Uanisds I5) $j1 ————

L §js iy} = filter $i0 $j2t $32c¢ $i2c

17 jy = Gaods) . l
= i i) $33——$34
| (o] w
$i3 $id—@

Iy o=,

Figure 7: (Left) input program in e-SSA form augmented with the results of
alias analyses. (Right) final reachability graph.

4.5. A Solution Quadratic in Time and Space

The function markTainted Vars in Figure 8 finds security bugs in e-SSA-
form Nano-PHP programs. We use SML/NJ’s syntax plus Erlang-style
guards in pattern matching, as in taintUse. MarkTainted Vars simulates a
traversal of the reachability graph from Section 4.2, but it does not build
the graph. Instead, it traverses use-chains. We let USE(x) be defined as in
Section 3.1. The use-chains of a variable v are the paths created by succes-
sive applications of the USFE function. For instance, in Figure 6 (Right), the
use-chains of variable j1 are the paths j1—j2t, and j1—j2c—j4.

Function markTaintedVars has three parameters: a set {i,iy,...,i,} of
instructions to process, an environment > that maps variables to clean or
tainted, and a set of visited instructions, which we keep to avoid visiting the
same instruction twice. When properly initialized, MarkTainted Vars returns
a new environment Y’ that maps to tainted every variable v in any path from a
source instruction to a sink instruction. Theorem 4.1 formalizes this property.
We say that a variable v reaches an instruction ¢ if either ¢ € USE(v),
or some i' € USE(v) defines a variable v’ that reaches i. We define the
notion of influence as in Section 3.1. We initialize markTainted Vars with
the instructions that assign variables from source, an environment ¥ that
maps every variable to clean, plus an empty set of visited instructions. For
instance, if we apply markTainted Vars onto the program in Figure 4, then
we start it with the set I, = {vg = o, x4 = o}.

Theorem 4.1. Let I, be the set of assignments from source in a Nano-PHP
program. If X' = markTaintedVars I, (Av.clean) (), then ¥'[v] = tainted if,

18

fun taintUse _ {...,(e=2x),...} = true

1 ’ (

2 | taintUse ¥ {...,(x=®(...)),...} A X+ x=tainted = true
3 | taintUse ¥ {...,(x =¢(...)),...} N Iz =tainted = true
4 | taintUse ¥ {...,(validate(.,_, _,z,.)),...} A ¥ F z = tainted = true
5 | taintUse _ _ = false

¢ fun markTaintedVars 0§ ¥ _ = X

7 | markTaintedVars {i,i1,...,in} ¥V =

8 let

9 val V! = {i} UV

10 fun doUseChainSearch v =

11 let

12 val N = USE(U) \ V/

13 val ¥ = markTaintedVars ({i1,...,in,} UN) X V’
14 in

15 if taintUse ¥ USE(v)

16 then Y'[v — tainted]

17 else Y’

18 end

19 in

20 case 7 of

21 o =z — markTaintedVars {i1,...,i,} X[z tainted] V’
29 x = o — doUseChainSearch x

23 z = ®(...) — doUseChainSearch x

2 x = ¢(...) = doUseChainSearch x

25 validate =z, z., l, ¢, l; — doUseChainSearch

26 end

Figure 8: The algorithm that finds security bugs in Nano-PHP programs.

and only if, v is influenced by an assignment from source, and v reaches an
assignment to sink.

MarkTainted Vars processes each instruction forwardly, i.e., a variable x
is tainted if any of the instructions that uses it defines a tainted variable. We
use the auxiliary function taintUse to check if any of the instructions in the
forward slice of a variable x defines a variable that has been set to tainted
in the environment. We stop traversing use-chains at sink instructions. Nei-
ther markTainted Vars nor taintUse deals with switches or filter instructions.

19

These instructions do not define nor use tainted variables. MarkTainted Vars
and the dataflow equations from Figure 2 are not equivalent. The dataflow
equations taint any variable that is influenced by an assignment from source,
whereas MarkTaintedVars only taints those that also reach an assignment
to sink. However, from Theorems 3.1 and 4.1 we see that if a Nano-PHP
program allows a source function to influence a sink operation, then both
algorithms will find it.

Complexity. The function markTainted Vars is quadratic in time and space.
Because markTainted Vars keeps the use-chains of every variable, this func-
tion uses O(V x I) space, where V' is the number of variables in the input
program, and [is the number of instructions in this program. The function
is recursively called at most once per each program instruction. When the
function is called, it might do a linear search on the use-chain of a variable,
inside the function doUseChainSearch. Therefore, this function has time
complexity O(I?).

5. Experiments

We have implemented the dataflow analysis discussed in Section 3 and our
e-SSA based analysis from Section 4 on top of the phc open source compiler [8,
9], which is written in C++. In this section we compare the runtime of both
implementations. The phc compiler, started in 2005 by Edsko de Vries and
John Gilbert, currently uses our implementation of e-SSA as an internal
representation. Our implementation of dataflow analysis, which we have
based on the version available in the Pixy tool, uses a standard working list
algorithm, and runs on the CFG of the input program sorted topologically.
This implementation pattern is standard in compiler design [15, pag.360].

Benchmarks: We have run our analysis on 20,900 files publicly avail-
able in 30 PHP content management systems (CMS). Most of these appli-
cations have been used in previous works [3, 10, 11]. The names of these
applications are given in Figure 9. In this section we show results for 13,297
files out of the 20,900 inputs (63.6%). The omissions are due to the fact that
phc, being a static compiler, is not able to analyze some features of PHP,
such as dynamic file inclusion or dynamic code evaluation. None of these
failures are due to our implementations, i.e., they occur independently of our
analysis. A detailed account of each phc failure is provided by Rimsa [13].

20

1400

=3 Build e-SSA
1200 | —— Run analysis .
mmm Dataflow analysis
1000 |- -
800 |- -
600 |- -
| I || I ‘ |
. I
- 'l | | L
0 1= 1= 12 !!!EIIIIIII II: I i I I
TR DE SN OV CSOUNNN®n NS BA >NV TEEWVOV G
33%ga§z;zz.gazzz$zﬂgmggzgﬁggznzg’
209082 LLULcVUULUEVegn2ZzLLoo=UEUX
o X SNJUS-CLFxoopxP0 SFagarTQulas
o c @ go o2 00w E oD E e EEZ
X @ cr8o0od S8 Sa&s5 TUYEG
L go = S o g £0
e E
T g = =
2 a
(9]

Figure 9: Average execution time (ms) per benchmark for dataflow and e-
SSA-based analyses. Bars are sorted by the time to run the dataflow based
analysis.

Set up: Currently our tool reads a configuration file that determines
which functions (user defined or from libraries) are sinks, sources and sanitiz-
ers. For these experiments we use a configuration file that identifies cross-site
scripting attacks, which we describe in Section 2.1. Notice that by properly
pointing sources, sinks and sanitizers our analysis can be easily modified to
handle other vulnerabilities, such as SQL injections (Section 2.2).

Efficiency: We compare the time to run the dataflow analysis (Sec-
tion 3) and the time to run our sparse analysis (Section 4). We run the
dataflow analysis on the original program, before the conversion to SSA (and
e-SSA) form. In order to produce e-SSA form programs, we start from a
non-SSA form program, and augment it with special instructions, i.e., o and
¢-functions [7, 17]. Figure 9 shows that the e-SSA based approach is faster
than the dataflow approach as the size of the input functions grow. Each bar
is the average sum of the times to process each function of the benchmark,
over 10 runs. On the average, our sparse analysis is 28% faster than the
traditional dataflow approach. We measure the time to analyze each func-

21

0.5

Dataflow with 8—S550 =——
Dataflow oo

0,2

] 150 300 450 BO0 700 900 1050 1200 1350 1500

Figure 10: The 1,500 functions in which our e-SSA based algorithm run in
the fastest time. We have ordered the functions according to our analysis
runtime. The dataflow approach was 7.3% faster in this scenario.

tion individually, and we do not consider functions containing less than 100
assembly instructions, for in this case time measurements are too imprecise.
Our benchmarks have provided us with 1,622 functions above this threshold.
The largest function that we have analyzed contains 1,141 instructions.

In order to see that the sparse approach scales better than the dense
analysis we have checked the runtime of both strategies in small and large
functions. Figure 10 shows the run time of our analysis for the 1,500 functions
that had the fastest processing time. These are very small functions, ranging
from 1 to 43 basic-blocks. As Figure 9 shows, the dataflow analysis is faster
in this scenario, because our approach has to bear the cost of initializing the
data-structure that holds the use-chains. On the average, for these small
functions the dataflow approach was 7.3% faster.

We chose 1,500 functions to build Figure 10 because, as we move towards
the left corner of the chart our analysis starts delivering faster times. This
tendency accentuates, as the size of the functions grows. Figure 11 shows
the processing time of the 50 functions that our algorithm took the longest
time to process. Our sparse approach was 20.3% faster in this scenario. The
largest function that we have analyzed contains 378 basic blocks a small
size to stress the runtime of both solutions. We speculate that once we cross
the boundaries of functions, and start analyzing whole PHP applications,
which might contain thousands of functions, and millions of lines of code, our

22

B4

Dataflow with e-55A ——
Dataflow « oo

2 F

16 f

0 10 20 El 40 501

Figure 11: The 50 functions in which our e-SSA based analysis had the
slowest runtimes. Functions are ordered by processing time. Our algorithm
was 20.3% faster than the dataflow approach.

files warnings
benchmark | version total processed
F ‘ LOC /T F ‘ TOC / F affected | TP | FP
MODx 1.0.3 472 231 308 228 3 1 1
Exponent 0.97 3456 42 2833 32 3 28 11
DCP Portal | 7.0 beta | 535 97 392 61 7 5 11
Pligg 1.04 380 146 179 154 3 1

RunCMS 2.1 737 134 361 86 2 1 6
avg. - - - - - 3.60 7.20 | 5.8

Table 4: Precision results. F is the number of files, and LOC/F is the number
of lines of PHP code per file. Affected is the number of files containing tainted
flow vulnerabilities. TP are true positives, and FP are false positives.

analysis will be significantly more efficient than the dataflow approach. Our
base compiler, phc, does not give us enough infra-structure to perform whole
program analyses, but its community is working to overcome this limitation.

Precision: Both our e-SSA based analysis and the dataflow analysis
have succeeded on the same inputs, reporting 63 warning messages across 25
distinct PHP files. Table 4 details these numbers for the subjects that con-
tain confirmed vulnerabilities. Manual inspection of each of these warnings
revealed actual vulnerabilities in 36 of these reports, i.e., a 45% false posi-
tive ratio. The false positives are due to the lack of whole program analysis,

23

which force us to assume that every function parameter is tainted. We used
this list of bugs to perform cross-site scripting attacks in 9 distinct PHP files.
To the best of our knowledge, none of these vulnerabilities have been previ-
ously reported. We have submitted all these vulnerabilities to the bugtraq
at http://www.securityfocus.com/. For a detailed account of each bug,
see Rimsa [13, 22].

5.1. An example of a real-world bug

In order to illustrate our analysis, we will show an actual bug that our im-
plementation found in the content management system MODx CMS version
1.0.3. We have reported this bug to the developers 7, who acknowledge the
presence of the bug. In this example we use the PHP program in Figure 12,
which was publicly available on 2010-5-4.

One of the steps of the installation process lets the user choose a database
collation from a small suite of options. Users specify this database via three
parameters: host, uid and pwd. Users also specify their choice for a col-
lation system via a string, which the PHP program stores in the variable
database_collation. The PHP file queries a database, using this vari-
able as a key. However, in case the parameters host, uid or pwd do not
determine a valid database, the module receives a collation option from a
variable originated from a post request, i.e., a form. This string, stored in
database_collation, is printed in the output without sanitization, as we
see in Line 17 of Figure 12. Therefore, in order to print a malicious script in
the user’s webpage, we can choose an invalid host for the database, and write
the script code directly in the form that feeds database_collation. For in-
stance, we can steal cookies from the user’s browsing environment with the
string “</option></select><script>window.alert(document.cookie);
</script>”. Our analysis is able to find this vulnerability, as we illustrate
in Figure 13. The reachability graph that we build for the example program
contains a path from the variable database_collation, which is initialized
from a source, to the function echo, which we qualify as a sink.

6. Related Work

The tainted flow problem fits the Information Flow framework proposed
by Denning and Denning [23]. We recommend the survey of Sabelfeld and

"http://www.securityfocus.com/bid/41454

24

<?php

$host = $_POST['host'];

$uid = $_POST['uid'];

$pwd = $_POST['pwd'];

$database_collation = $_POST['database_collation'];

Soutput = '<select id="database_collation" name="database_collation">

<option value="'.$database_collation. selected >'
.$database_collation. '</option></select>";

6 |if ($conn = @ mysql_connect($host, $uid, $pwd)) {

// get collation

(O I ~NOS I NS

7 $getCol = mysqgl_query("SHOW COLLATION");
8 if (@mysql num rows($getCol) > 0) {
9 $output = '<select id="database_collationse_collation"
name="database_collation">";
10 while ($row = mysql fetch row($getCol)) {
11 $selected = (S$row[0]==$database collation ? ' selected' : '');
12 Soutput .= '<option value="'.$row[0].'"'.$selected.'>"'.Srow[0].
'</option>';
13 }
14 Soutput .= '</select>';
15 }
16 |}
17 | echo $output;
2>

Figure 12: An installation file used in MODx CMS version 1.0.3. This file
contains a XSS vulnerability, which we have highlighted in boldface.

I5: output; = ®(database_collation) <————I, database_collation, = o

Ly bra 1y, I, ——>1y: outputy = () —>I;: bra 1, I, :

1,: select;; = ®(database_collation) $database_collation4
1, output,, = ®() <1, output,, = ®(select,)) Soutput5
I, output, = outputs, output,,) 1,5 * = output, $outputdé—>@

Figure 13: (Left) the Nano-PHP representation of the program in Figure 13
— we show only the highlighted lines. (Right) The reachability graph.

Myers [24] for a more recent view about the field. The main goal of infor-
mation flow analyses is to track how data flows along the many paths that
constitute a program code. Early implementations of information flow algo-

25

rithms relied on type systems such as Smith et al.’s [25] and Myers et al. [26].
As an illustrative example, Orbaek and Palsberg [6]’s tainted flow analysis,
from which we started the present work, is type based. However, more re-
cent approaches to the tainted flow problem tend to use program slicing [19]
and/or dataflow analyses instead of pure type systems.

The tainted flow problem is well known in the literature [4, 3, 10, 27, 28].
Wasserman and Su [4] have used context-free grammars and string analy-
sis [29] to prove that functions manipulate strings safely. Another strategy,
which uses symbolic execution to solve the tainted flow problem, was pro-
posed by Xie and Aiken [3]. While our analysis has conditional validators
powered by the e-SSA representation, these other approaches try to infer new
functions as validators. However, a direct comparison between these previ-
ous two works and ours is not possible, because the tools are not publicly
available. We can only speculate that, by using symbolic execution or string
analysis, they are more expensive than ours, although likely more precise.

However, there exist publicly available tools that perform tainted flow
analysis. Our work has found strong motivation in the design of Pixy [10],
a PHP analyzer that uses the dataflow framework given in Section 3. There
are also tools that rely on program dependence graphs to implement efficient
tainted flow analyzers. An example is MARCO [27], a Java bytecode checker
based on program slicing. TAJ [28], a tainted flow tracker for Java, has
extended some of the techniques present in MARCO to an industrial level.
TAJ seems to have important influence in the design of ACTARUS [5], which,
on its turn, served as the baseline of FAF [30]. All these tools have been
shown to scale to programs having millions of lines of code. Finally, the Joana
tool [31, 32, 33| elegantly combines the dataflow monotone framework from
Section 3 with the classic program dependence graph [34] in order to detect
tainted flow vulnerabilities. Our most important contribution with relation
to these tools is path sensitiveness, a property that we obtain from the e-
SSA intermediate representation. We believe that versions of Pixy, MARCO,
TAJ, AcTARUS, F4F or Joana augmented with the means to recognize e-SSA
form programs will be also path-sensitive.

Many compiler analyses are based on graph reachability. In this case, the
subject graph normally represents part of a program slice [19]. This strat-
egy was made popular by the pioneering works of Choi et al. [35] and Reps
et al. [36]. Scholz et al. [37] provide a clear explanation about how graphs
are used to model dataflow problems. The tainted flow problem has been
modeled as instances of graph reachability before [28, 31, 38]. In particular,

26

relying on the notion of thin slicing [39], Tripp et al. [28] have been able to
analyze remarkably large benchmarks. However, to the best of our knowl-
edge, we present the first algorithm that uses the e-SSA representation to
model conditional validators inside the graph reachability framework.

The e-SSA intermediate program representation [7]| allows us to model a
dataflow problem sparsely [35]. There exist many program representations
that have been designed with this purpose. The most well known member
of this family is the Static Single Assignment (SSA) form [17]. Another
program representation that has been conceived with similar objectives is
the Static Single Information (SSI) form [40, 41], which deals with backward
dataflow analyses. We opted to use the e-SSA form because, contrary to
SSA form, it allows us to capture information from conditional tests. The
SSI representation also gives us this type of information; however, it inserts
almost seven times more copies into the source program when compared to
the e-SSA form and takes almost 15 times longer to build [42].

7. Conclusions

We have presented a novel technique to statically identify tainted variable
attacks in web applications. We modeled our static analysis as a reachability
problem on a constraint graph, which is computed from an e-SSA form pro-
gram. The e-SSA intermediate program representation [7] is fundamental to
the efficiency of our approach: we can find tainting scenarios very efficiently
using the e-SSA constraint-graph and recent developments have shown that it
is possible to compute e-SSA also very efficiently [42]. Our analysis was able
to find real security vulnerabilities in popular web applications from a vari-
ety of sources. We have reported the bugs that we found to the application
maintainers. Some have acknowledged and fixed the vulnerabilities.

We compared precision and efficiency of our solution with an iterative
dataflow algorithm [10]. We implemented both approaches on top of phc,
an open source PHP compiler. As for precision, the e-SSA and dataflow
analyses are similar: they found exactly the same vulnerabilities. As for
efficiency, the e-SSA is often faster. In our experiments, we show that our
solution with e-SSA tends to become faster than its dataflow counterpart
when processing larger PHP files. Our implementation of the algorithm that
converts a program to e-SSA form is currently available in the phc com-
piler. The framework to detect tainted variable vulnerabilities is available at
https://github.com/rimsa/tainted-phc.git. Important to note that al-

27

though dataflow algorithms are far from a new concept, the formal definition
from Section 3.1 is a contribution of our work.

Limatations. We decided to perform our tainted flow analysis on PHP pro-
grams because this language is widely used in the development of web applica-
tions. Unfortunately, PHP presents unique challenges to static analyzers [9].
To avoid the herculean task of modeling the whole language semantics, we
decided to rely on a compiler infra-structure — phc’s — that already performs
many useful analyses. As expected, our analysis is conditioned to the same
limitations of the compiler [8]. So far, phc does not allows us to analyze
statically programs showing runtime code inclusion and runtime code eval-
uation. The phc compiler deals with such features by resolving their values
at compile-time, if they can be inferred statically. Otherwise, the analyzer
is forced to abort due to an incomplete view of the whole program. An al-
ternative to these deficiencies is runtime code monitoring, a technique that
tracks the flow of information dynamically. Nevertheless, static approaches
like ours are still useful to mitigate the amount of instrumentation that must
be used to monitor programs, as it has been demonstrated by Halfond et
al. [43], and Huang et al. [44].

Future Work. In the future, we plan to reduce the rate of false positives
that our analysis reports. To that end, we will transform our analysis from
intra- to inter-procedural. To achieve this goal, we need to modify the phc
whole program analysis to convert the program into SSA (and in e-SSA)
on demand, as described in [9, p.63]. The conversion must run alongside
other client analysis, such as alias-analysis and type-inference. However, we
must overcome phc scalability issues concerning memory management before
attempting to implement the inter-procedural analysis.

Acknowledgment. Andrei Rimsa is supported by CAPES. We thank Paul
Biggar for invaluable help with the phc compiler, plus the anonymous re-
viewers for helping to improve the text. This work was partially supported
by the National Institute of Science and Technology for Software Engineering
(INES: www.ines.org.br).

References

[1] D. Scott, R. Sharp, Specifying and enforcing application-level web se-
curity policies, Trans. on Knowl. and Data Eng. 15 (2003) 771-783.

28

[2] H. Bojinov, E. Bursztein, D. Boneh, XCS: Cross channel scripting and
its impact on web applications, in: CCS, ACM, 2005, pp. 420—431.

[3] Y. Xie, A. Aiken, Static detection of security vulnerabilities in scripting
languages, in: USENIX-SS, USENIX Association, 2006, pp. 179-192.

[4] G. Wassermann, Z. Su, Sound and precise analysis of web applications
for injection vulnerabilities, in: PLDI, ACM, 2007, pp. 32-41.

[5] S. Guarnieri, J. Dolby, M. Pistoia, S. Teilhet, O. Tripp, R. Berg, Saving
the world wide web from vulnerable javascript, in: ISSTA, ACM, 2011,
pp- 177-187.

[6] P. Orbaek, J. Palsberg, Trust in the A-calculus, Journal of Functional
Programming 7 (1997) 557-591.

[7] R.Bodik, R. Gupta, V. Sarkar, ABCD: eliminating array bounds checks
on demand, in: PLDI, ACM, 2000, pp. 321-333.

[8] P. Biggar, Design and Implementation of an Ahead-of-Time Compiler
for PHP, Ph.D. thesis, Trinity College Dublin, 2009.

[9] P. Biggar, E. de Vries, D. Gregg, A practical solution for scripting
language compilers, in: SAC, ACM, 2009, pp. 1916-1923.

[10] N. Jovanovic, C. Kruegel, E. Kirda, Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper), in: S&P, IEEE,
2006, pp. 258-263.

[11] N. Jovanovic, C. Kruegel, E. Kirda, Precise alias analysis for static
detection of web application vulnerabilities, in: PLAS, ACM, 2006, pp.
27-36.

[12] R. Chugh, J. A. Meister, R. Jhala, S. Lerner, Staged information flow
for javascript, in: PLDI, ACM, 2009, pp. 50-62.

[13] A. Rimsa, Efficient detection of tainted flow vulnerabilities, Master’s
thesis, Federal University of Minas Gerais, 2010.

[14] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition), Addison Wesley, 2006.

29

[15] A. W. Appel, J. Palsberg, Modern Compiler Implementation in Java,
Cambridge University Press, 2nd edition, 2002.

[16] J. Palsberg, Efficient inference of object types, Inf. Comput. 123 (1995)
198-209.

[17] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck,
Efficiently computing static single assignment form and the control de-
pendence graph, TOPLAS 13 (1991) 451-490.

[18] T. Lengauer, R. E. Tarjan, A fast algorithm for finding dominators in
a flowgraph, TOPLAS 1 (1979) 121-141.

[19] M. Weiser, Program slicing, in: ICSE, IEEE, 1981, pp. 439-449.

[20] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, M. Streich, Effective represen-
tation of aliases and indirect memory operations in SSA form, in: CC,
Springer, 1996, pp. 253-267.

[21] A. Pioli, M. Burke, M. Hind, Conditional Pointer Aliasing and Constant
Propagation, Technical Report 99-102, SUNY at New Paltz, 1999.

[22] A. A. Rimsa, M. d’Amorim, F. M. Q. Pereira, Efficient static checker
for tainted variable attacks, in: SBLP, SBC, 2010, pp. 1-14.

[23] D. E. Denning, P. J. Denning, Certification of programs for secure
information flow, Commun. ACM 20 (1977) 504-513.

[24] A. Sabelfeld, A. Myers, Language-based information-flow security, Jour-
nal on Selected Areas in Communications 21 (2003) 5-19.

[25] G. Smith, D. Volpano, Secure information flow in a multi-threaded
imperative language, in: POPL, ACM, 1998, pp. 355-364.

[26] A. C. Myers, B. Liskov, Protecting privacy using the decentralized label
model, TOSEM 9 (2000) 410-442.

[27] M. Pistoia, R. Flynn, L. Koved, V. Sreedhar, Interprocedural anal-
ysis for privileged code placement and tainted variable detection, in:
ECOOQOP, Springer, 2005, pp. 362-386.

30

[28] O. Tripp, M. Pistoia, S. Fink, M. Sridharan, O. Weisman, TAJ: Effective
taint analysis of web applications, in: PLDI, ACM, 2009, pp. 87-97.

[29] A. S. Christensen, A. Mgller, M. I. Schwartzbach, Precise analysis of
string expressions, in: SAS, Springer, 2003, pp. 1-18.

[30] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, R. Berg,
F4F: Taint analysis of framework-based web applications, in: OOPSLA,
ACM, 2011, pp. 1053-1068.

[31] C. Hammer, J. Krinke, G. Snelting, Information flow control for java
based on path conditions in dependence graphs, in: ISSSE, IEEE, 2006,
pp- 1-10.

[32] C. Hammer, Information Flow Control for Java, Ph.D. thesis, Universi-
tatsverlag Karlsruhe, 2009.

[33] C. Hammer, G. Snelting, Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs,
International Journal of Information Security 8 (2009) 399-422.

[34] J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence
graph and its use in optimization, TOPLAS 9 (1987) 319-349.

[35] J.-D. Choi, R. Cytron, J. Ferrante, Automatic construction of sparse
data flow evaluation graphs, in: POPL, ACM, 1991, pp. 55-66.

[36] T. Reps, S. Horwitz, M. Sagiv, Precise interprocedural dataflow analysis
via graph reachability, in: POPL, ACM, 1995, pp. 49-61.

[37] B. Scholz, C. Zhang, C. Cifuentes, User-input dependence analysis via
graph reachability, Technical Report, Sun Microsystems, Inc., 2008.

[38] J. S. Foster, T. Terauchi, A. Aiken, Flow-sensitive type qualifiers, in:
PLDI, ACM, 2002, pp. 1-12

[39] M. Sridharan, S. J. Fink, R. Bodik, Thin slicing, in: PLDI, ACM, 2007,
pp. 112-122.

[40] S. Ananian, The Static Single Information Form, Master’s thesis, MIT,
1999.

31

[41] J. Singer, Static Program Analysis Based on Virtual Register Renaming,
Ph.D. thesis, University of Cambridge, 2006.

[42] A. L. C. Tavares, F. M. Q. Pereira, M. A. S. Bigonha, R. Bigonha,
Efficient SSI conversion, in: SBLP, pp. 1-14.

[43] W. G. J. Halfond, A. Orso, AMNESIA: analysis and monitoring for
neutralizing sql-injection attacks, in: ASE, ACM, 2005, pp. 174-183.

[44] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, S.-Y. Kuo, Se-
curing web application code by static analysis and runtime protection,
inn WWW, ACM, 2004, pp. 40-52.

A. Proofs of Theorems

A.1. Proof of Theorem 3.1

If [11, 2] (v) = tainted, then this abstract value must have been set either
by Rule 1 or 3 in Figure 2, because Rules 2, 4 and 6 do not define variables,
and Rule 5 always defines clean variables.

e [f v has been bound to tainted by Rule 1, then we are done.

e If v has been bound to tainted by Rule 3, then we have that one of
the parameters of [: v = ®(xq,...,x,) is tainted. The result holds by
induction on (/,[,). This propagation chain must terminate, because
the program is finite. O

A.2. Proof of Theorem /.1

=) We must show that ¥'[v] = tainted only if v is influenced by some
assignment from source, and v reaches an assignment to sink. We start
markTaintedVars with an environment that maps every variable to clean.
Therefore, if ¥'[v] = tainted, then v is defined or used by an instruction that
is visited, as we see in line 9 of Figure 8. If we initialize markTainted Vars
only with source instructions, then only instructions influenced by these seeds
are visited, as we see in line 12 and 13. Finally, as we see in line 21, only
assignments to sink generate tainted values in J; the other instructions only
propagate them.

<) We must show that if a variable v is influenced by an assignment
from source i,, and reaches an assignment to sink i,, then >'[v] = tainted.

32

The proof is an induction on the size of the use-chain from the instruction ¢
that is currently visited to i,. We assume that a variable ¥'[v] = tainted if
v reaches 7, through a use-chain of n nodes. In the base case, we have that
i = 1ie, €.g., ® = v, and in line 21 of our algorithm we set ¥'[v] = tainted. In
the induction step we consider lines 22-25 of our algorithm. We have that v
is defined by an instruction ¢« € V', and function doUseChainSearch is called
on v. If v reaches i, through a use-chain of n + 1 nodes, then there must be
a path between some i’ € USE(v) and i, with n nodes. If ¢’ is an assignment
to sink v is tainted in line 21. Otherwise, by induction, i’ defines a variable
x such that >'[z] = tainted, and taintUse ¥’ USE(v) = true. In this case,
we set ¥'[v] = tainted at line 16 of Figure 8. O

33

