
Quantifying Information Leaks using Reliability Analysis

(work in progress)

Quoc-Sang Phan∗ Pasquale Malacaria∗ Corina S. Păsăreanu† Marcelo d’Amorim‡
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ABSTRACT
In recent work we have proposed a software reliability analy-
sis technique that uses symbolic execution and model count-
ing to quantify the probability of reaching designated pro-
gram states, e.g. assert violations, under uncertainty con-
ditions in the environment. The technique has many ap-
plications beyond reliability analysis, ranging from program
understanding and debugging to analysis of cyber-physical
systems. In this paper we report on a novel application of
the technique, namely Quantitative Information Flow anal-
ysis (QIF). The goal of QIF is to measure information leak-
age of a program by using information-theoretic metrics
such as Shannon entropy or Rényi entropy. We exploit the
model counting engine of the reliability analyser over sym-
bolic program paths, to compute an upper bound of the
maximum leakage over all possible distributions of the con-
fidential data.

We have implemented our approach into a prototype tool,
called QILURA, and explore its effectiveness on a number
case studies.

1. INTRODUCTION
Quantitative information flow analysis (QIF [7, 15]) is

a rigorous approach to measure information leakage. The
intuition is that absolute security is hard to achieve, con-
sequently, under some circumstances, programs with small
leaks are acceptable as secure. QIF has gained consider-
able attention in recent years. It has been used to anal-
yse software confidentiality [4, 10, 20, 18], to measure loss
of anonymity in communication protocols [6], and to assess
leakage of information via side-channel [14, 8]. QIF builds
on the hypothesis that a malicious user can make observa-
tions on the public input and output data used in a function
call to infer confidential data. The technique measures the
reduction in uncertainty about the secret as an hypothetical
malicious user makes observations on public data.

In recent work we have developed a software reliability
analysis technique [9] that uses a bounded symbolic execu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Adversary

tries to infer

H from L and O

H

L
O

f

int check(int L, H){
int O;
if (H < 16)

O = L + H;
else O = L;
return O;

}

Figure 1: 24 (=4 bits) distinct outputs for H > 0.

tion to collect a set of symbolic paths over the analyzed
programs. The path constraints associated with the paths
are combined with given probabilistic usage profiles and an-
alyzed using model counting techniques [1] to quantify the
probability of reaching designated program states (e.g. suc-
cessful termination or the opposite, failure states such as
assert violations). In this work we adapt the reliability anal-
ysis to QIF by considering information leakage as the failure
states and using model counting over the input constraints
to quantify the likelihood of leakage assuming a uniform us-
age profile.
Example. Figure 1 shows an example function that we use
to illustrate QIF. This example has been used in previous
related work [20, 18]. It is a convention in the security litera-
ture to use the label L (“low”) to denote non-sensitive input,
to use the label H (“high”) to denote sensitive private input,
and to use the label O (“output”) to denote the output. A
malicious user has access to the public data, L and O, and
tries to infer the hidden secret, H, from that.

Automating QIF analysis is a challenge. For example,
to analyse the program above, in [18] and more recently
[19], the authors manually transformed it into bit vector
predicates. Other papers require users to have verification
expertise to use an interactive theorem prover [12], or require
user to write a driver following a template [10], or to modify
the program under test [13].

In this paper, we introduce an automated tool, QILURA
(Quantify Information Leaks Using Reliability Analysis),
for QIF analysis. Given a program, and inputs labelled as
high and low, QILURA computes an upper bound on the
maximum number of bits that the program can leak to a
public observer. Our implementation is done in the context
of Java bytecode programs and the SPF [22] symbolic exe-
cution engine, extended for reliability analysis [9]. However,
the work is general and can be applied in the context of any
programming language for which a symbolic execution tool
exists.

At a high level, the architecture of QILURA is depicted
in Figure 2. The user labels the inputs of the program with
high and low. The program is then passed to SPF to collect
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Figure 2: Architecture of QILURA

all possible symbolic paths. The Labeling Procedure, using a
fine-grained self-composition [5], classifies all the paths into
three categories: clean, direct and indirect. The proce-
dure uses z3 [3] for satisfiability checking of self-composition
condition.

Finally, the Quantifying Procedure uses model-counting
techniques [1] over the symbolic constraints (simplified using
Omega [2]) collected by SPF to count the number of inputs
that follow paths labeled with“direct”and provides an upper
bound of k bit on the leaks.

2. PRELIMINARIES

2.1 Quantitative Information Flow
Consider again the program in Figure 1 in the case L =

0x1000. Clearly, only integer values from 0x1000 to 0x100f

are possible outputs for this function. An attacker has hence
16 possible output choices depending on the value of H:
observing outputs 0x1001 .. 0x100f reveals that H is in the
range [1,15] and observing output 0x1000 reveals that the
secret is 0 or greater than 15.

Let XH , XL and XO be random variables representing
the distribution of H, L, and and O, respectively. Assuming
the attacker only knows that H is a 32-bit variable, his a-
priori probability of guessing the value of H in one try is
1

232
. which leads to the uncertainty ofH measured in Rényi’s

min-entropy [23] is: E(XH) = − log2( 1
232

). Moreover, the
expected probability of guessing the secret in one try after
observing the outputs is:
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which leads to the remaining uncertainty after observing O
is: E(XH |XL = 0x1000, XO) = − log2( 16

232
). Leakage is

calculated as the reduction of uncertainty of H after the
observation

∆E(XH) = E(XH)− E(XH |XL = 0x1000, XO) = log2(16)

Notice that log(16) = log (number of output observations):
this is not a coincidence. A fundamental QIF result (the
channel capacity theorem [16, 24]) shows that leakage for
a program is always less or equal to the log of the number
of observables of the program. More importantly the result
holds if we consider not only the above notion of leakage
based on the probability of guessing the secret [24] but also
the notion of leakage based on Shannon’s information theory
measuring the number of bits leaked [7]. For these reasons
counting the number of observables is the basis of state-of-
the-art QIF analysis, e.g. [18, 10, 21], and also the basis for
this work. The channel capacity theorem also justifies the
following:

Definition 1. Given a program P , QIF is the problem of
counting N , the number of possible outputs of P . log2(N) is

the channel capacity (i.e. the maximum leakage) of the pro-
gram P, denoted by CC(P ), measured by Shannon entropy
or Renyi’s min-entropy.

2.2 Symbolic Execution
Symbolic Execution (SE) [11], is a program analysis tech-

nique which executes programs on unspecified inputs, by
using symbolic inputs instead of concrete data. For each ex-
ecuted program path, the analysis builds a path condition
pc, i.e. a conjunction of boolean conditions characterizing
the inputs that follow that path. This pc is built according
to the branching conditions in the code and it is checked
for satisfiability using off-the-shelf solvers. If a pc becomes
unsatisfiable it means that the corresponding path is not
feasible in the program (and the analysis backtracks). The
execution paths followed during the symbolic execution of
a program are characterized by a symbolic execution tree.
The nodes represent program (symbolic) states and the arcs
represent transitions between states.

In the setting of SE, the program P is modelled as a (tree-
like) transition system:

P = (Σ, I, F, T )

where Σ is the set of symbolic states. I ⊆ Σ is the set
of initial symbolic states; F ⊆ Σ is the set of final symbolic
states; and T ⊆ Σ×Σ is the transition function. A symbolic
path of P is represented by a sequence of symbolic states:

ρ = σ0σ1..σn

such that σ0 ∈ I, σn ∈ F and 〈σi, σi+1〉 ∈ T for all i ∈
{0, . . . , n− 1}. The symbolic semantics of P is then defined
as the set of all symbolic paths R (i.e. the symbolic execu-
tion tree). We define two functions init and fin to get the
initial state and final state of ρ:

init(ρ) = σ0 and fin(ρ) = σn

We denote by X|y the value of the variable X at the state
y. After symbolically executing the program P with initial
input symbols H = α,L = β, for each σi ∈ F , i.e. each leaf
of the symbolic execution tree, we have a symbolic formula
fi for the value of the output O in the symbolic environment:

O|σi = fi(α, β)

The path condition pci is a formula ci(α, β) expressing the
condition for state σi to be reachable. Each pci corresponds
to a symbolic path ρi. We define the function path such
that: path(ρi) = pci ≡ ci(α, β).

2.3 Reliability Analysis
In previous work we described a reliability analysis tool

[9] based on symbolic execution and model counting. The
tool takes as input a Java program and the usage profile
and computes an estimate of the probability for satisfying
(or violating) a property of interest, e.g. an assertion in the
code or a designated observable event. Internally, the tool
uses a bounded symbolic execution (SPF [22]) to produce
a set of path constraints which are then classified in the
sets pcT and pcF based on whether the paths lead to the
the target event (T) or not (F). A third set pcG (G stands
for “grey”) characterizes the paths for which the event did
not occur, but the bound was hit (e.g. due to loops or
recursion). The path constraints define disjoint input sets
and cover the whole input domain of the program [11]. The



tool then quantifies the probability of each set. Note that
the computed probability for pcG results in a measure for
the confidence in the results obtained within the bound (the
lower the probability the higher the confidence); see [9]. For
the sake of space we will not consider grey paths here; we
will instead label them as “T”.

The probability of satisfying the property is defined as the
probability of an input distributed according to the usage
profile to satisfy any of the path constraints in pcT . Assum-
ing a uniform usage profile, this probability is #(pcT )/#(D),
where #(pcT ) is the number of solutions satisfying the dis-
joint constraints in pcT and #(D) is the size of the finite
(but possibly very large) input domain D. #(pcT ) can be
computed efficiently using model-counting techniques such
as Latte [1]. For QILURA we do not compute probabili-
ties but use directly the counts over the computed symbolic
constraints.

3. QILURA
At a high level, QILURA has two steps. First, SE is

run to collect all symbolic paths of the program (up to a
user-specified depth), then each path is assigned a label: (i)
clean: if it leaks no information, (ii) direct: if it leaks
information via direct flow, and (iii) indirect: if it leaks
information via indirect flow. Secondly, we use the model-
counting from[9] to count the number of possible inputs that
go to “direct” path, and compute an upper bound on the
leakage.

3.1 Fine-grained self-composition
Given a program P that takes secret input H, public input

L and producing public output O, we denote by P ′ the same
program as P , with all variables renamed: H as H ′, L as L′

and O as O′. Following [5] we express self-composition by
the Hoare triple:

{L = L′}P ;P ′{O = O′} (1)

This Hoare triple states that if the precondition L = L′

holds, then after the execution of P ;P ′, the postcondition
O = O′ also holds. Thus, satisfying the triple guarantees
that the program P does not leak information.

We run SE on the self-composed program P ;P ′ with input
symbols as follows: H = α, H ′ = α1, L = L′ = β. Thus
the precondition automatically holds. Assume the symbolic
semantics of P and P ′ is R and R′ respectively. The self-
composition formula in (1) can be re-written as:

∀ρ ∈ R, ρ′ ∈ R′.path(ρ) ∧ path(ρ′)→ O|fin(ρ) = O′|fin(ρ′)
(2)

In case (2) is violated, if ρ′ and ρ are the same symbolic
path up to renaming then ρ leaks information via direct
flow, otherwise ρ and ρ′ leak information via indirect flow.

The implementation for checking self-composition is built
from (2) as in Figure 3. The function isSAT is implemented
by calling the SMT solver z3 [3].

3.2 Model counting for symbolic paths
For a symbolic path ρ, let #in(ρ) and #out(ρ) denote

the number of concrete inputs and outputs of ρ respectively.
Obviously #in(ρi) is #(pci) computed in [9]. After being
labeled, all paths are classified into three categories: clean,
direct and indirect. So the channel capacity is bounded by:

CC(P ) ≤ log2(Σ#out(ρc) + Σ#out(ρi) + Σ#out(ρd))

for all ρi do {
label[i] ← clean

ϕ← ci(α, β) ∧ ci(α1, β) ∧ ¬(fi(α, β) = fi(α1, β))
if (isSAT(ϕ)) then label[i] ← direct

}
for i = 1 to n− 1 do

for j = i+ 1 to n do {
ϕ← ci(α, β)∧ cj(α1, β)∧¬(fi(α, β) = fj(α1, β))
if (isSAT(ϕ)) then {

if (label[i] = clean) then label[i]← indirect

if (label[j] = clean) then label[j]← indirect
}

}

Figure 3: Fine-grained self-composition

where ρc is the clean path, ρi is the indirect path, and ρd is
the indirect path.

• Since clean paths are not interfered by the confidential
input we can replace Σ#out(ρc) with 1.

• An indirect path only reveals that the program follows
that path, its output are not interfered, and each path
has one output. Thus, Σ#out(ρi) is just the number
of indirect paths.

• We hence only need to compute Σ#out(ρd).

A deterministic program can be viewed as a function that
maps each input to exactly one output output (denotational
semantics). Therefore, the number of inputs is always greater
than or equal to the number of possible outputs. This means
#in(ρ) ≥ #out(ρ), and Σ#in(ρd) ≥ Σ#out(ρd).

By using the model counting for symbolic path in [9], we
can compute Σ#in(ρd), and hence compute an upper bound
of channel capacity CC(P ).

4. EVALUATION
Automated QIF analysis is notoriously hard. To the best

of our knowledge, the only tool for QIF analysis of Java
bytecode is our own work jpf-qif [21] which uses SE for QIF
analysis, but no model counting. Instead jpf-qif adds the
conditions for testing each bit of the output at the end of
the program, hence exploring all these conditions using SPF.
We compare jpf-qif with QILURA below.

We also compare with BitPattern [18], which computes an
upper bound on channel capacity by exploring the relations
between every pair of bits of the output. In more recent
work [19], BitPattern was improved using new heuristics.
We compare QILURA with (the improved) BitPattern on
several case studies taken from [18, 19].

Moreover, we consider a special case when the program
does not leak any information to assess the effectiveness and
precision of our technique in such a corner case.

if (H > 999){
O = -1;

} O = H; O = O - H;

Case Study 1: No Flow

The program does not
leak information because
the output O is always 0
regardless of the value of
the secret H. However,
the assignment O = H
and the condition H > 999 make the program be rejected by
other qualitative information-flow techniques, e.g. the ones
based on type system [25] or taint analysis.



Case Study
jpf-qif QILURA BitPattern

Capacity Time Upper Bound Time Upper Bound Time
No Flow 0 2.304 0 0.790 - -
Sanity check, base =0x00001000 4 45.324 4.09 1.066 4 0.036
Sanity check, base =0x7ffffffa 4 35.346 4.09 1.049 4.59 0.203
Implicit Flow 2.81 0.897 3 0.796 3 0.011
Electronic Purse 2 1.169 2.32 0.854 2 0.157
Ten random outputs 3.32 1.050 3.32 0.814 18.645 0.224

Figure 4: Capacity and bounds are in bits, times are in seconds. “-” means “not reported”.

Results and discussions
Figure 4 summarises our experiment, we take the time from
the faster version of BitPattern in [19]. Note that in both
[18] and [19], the authors manually transform the programs
into bit vector predicates, so there will be extra time if they
automate this process.

As shown in the figure, the upper bound computed by
QILURA only deviate to a small extent from the exact chan-
nel capacity computed by jpf-qif. However, by using a model
counting tool, QILURA is much faster.

The BitPattern technique can also compute rather tight
upper bound in most of the cases. However, by analysing the
relations of pairs of bits, the technique is vulnerable when
possible values of the output are not in a specific range, as
shown in the last case study.

5. RELATED WORK
Backes et al. [4] describe how to use the model checker

ARMC and Latte for QIF analysis. Their technique is very
precise but also extremely expensive: it involves input count-
ing to compute the pre-image of the observables; in contrast
our input counting is used for counting the observable. The
work was extended in [12] which uses KeY, an interactive
theorem prover, instead of ARMC, but requires significant
user effort. Other works on QIF analysis [17, 20] do not
provide formal guarantees and bounds as we do here. The
only technique that can precisely determine if a program
leaks information is self-composition [5]. QILURA also uses
self-composition with the key difference that it is able to
determine if a single symbolic path leaks information.

6. CONCLUSION AND FUTURE WORK
In this paper we presented QILURA which embodies a

novel application of reliability analysis based on symbolic
execution and model counting to Quantitative Information
Flow analysis. QILURA is still just a prototype but our pre-
liminary experiments show encouraging results. We plan to
make the tool available and to perform larger case studies.
We also plan to investigate approximate exploration tech-
niques (instead of the exact, complete exploration presented
here), for increased scalability, but with formal statistical
guarantees on the results.
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