
Visual Sketching: From Image Sketches to Code
Marcelo d’Amorim

Federal University of Pernambuco
damorim@cin.ufpe.br

Rui Abreu
INESC-ID and IST, U.Lisbon

rui@computer.org

Carlos Mello
Federal University of Pernambuco

cabm@cin.ufpe.br

Abstract
Writing code is difficult and time consuming. This vision paper
proposes Visual Sketching, a synthesis technique that produces
code implementing the likely intent associated with an image. We
describe potential applications of Visual Sketching, how to realize
it, and implications of the technology.

Keywords
code synthesis, machine learning, computer vision
ACM Reference Format:
Marcelo d’Amorim, Rui Abreu, and Carlos Mello. 2020. Visual Sketching:
From Image Sketches to Code. In The 42th International Conference on Soft-
ware Engineering, May 23âĂŞ29, 2020, Seoul, South Korea. . ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Writing code is challenging. Programmers make mistakes for dif-
ferent reasons. A variety of languages, libraries, and coding tools
are available today to solve different problems. However, keeping
up with all the choices available can be daunting. Furthermore,
development is often a repetitive task, leading to copies of similar
code and errors [16].

We propose Visual Sketching, a low/no-code approach [3] to
mitigate some of these problems. Visual Sketching uses computer
vision algorithms and machine learning to translate images into
code. With Visual Sketching developers draft their intent with a
picture and obtain rapid access to code implementing their speci-
fication. The idea of Visual Sketching applies to any domain, but
we argue that the approach is particularly useful for data scientists.
For example, it has been reported that data scientists spend ∼80%
of their time preparing the data that will be analyzed [12]. Visual
Sketching can help reducing this cost.

Visual Sketching is a technique for program synthesis, an area
that is mainly investigated by the Programming Languages and
Software Engineering communities, but one that is intensively
fertilized by Machine Learning. Although this is a very active area
of research [13], to the best of our knowledge, the use of images to
compile code snippets has not been explored in depth. Model-based
development uses visual languages (e.g., Simulink and Stateflow [7])
to generate code. Microsoft’s PROSE [6] allows users to define their
own domain-specific language to synthesize code. In contrast to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, South Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

import pandas as pd
fileName = ? #fill hole (in)
df1 = pd.read_csv(fileName)
colName = ? #fill hole (in)
df2 = df1[[colName]]
file = ? #fill hole (out)
df2.to_csv(file, index=None)

Figure 1: Column projection from csv file.

these approaches, Visual Sketching synthesizes code from images;
it has been inspired by coding cards [5], which has shown to be a
useful tool to teach programming languages [2, 9]. It innovates on
that idea by allowing visual patterns to describe code intent.

The Workflow: The Visual Sketching workflow consists of the
following steps. First, a developer defines a transformation from
images into code. The transformation is a function that takes an
image on input and looks for a matching image for the input im-
age on an image database. If a match is found, the transformation
extracts relevant information from the input image, if needed, and
generates code on output that is associated with the reference im-
age. Developers that define these transformations are familiar with
computer vision algorithms and the infrastructure we provide; they
are not (necessarily) users of the tool. Second, users write an image
describing their intent. Third, the tool looks for a match and if a
match is found it produces the code. Fourth, the user fills the “holes”
in the code. A hole denotes elements that were not inferred from
the input image and should be completed by the user.

2 Motivating Examples
This section motivates Visual Sketching with two examples of tasks
commonly performed by data scientists.

2.1 Data Wrangling
DataWrangling is an important initial step in data analysis that con-
sists of preparing the data. It is considered a very time-consuming
and tedious step [12]. The following examples show how Visual
Sketching can help data wrangling.

Consider the functionality of projecting a column from a comma-
separated values (csv) file. Figure 1 illustrates the reference image
and the corresponding code associated with this transformation.
The user-provided image is the input to the transformation; it does
not appear in the figure. The image on the figure is a reference
to match against the input image. The input image should have
similar layout structure compared to the image in the figure (see

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE ’20, May 23–29, 2020, Seoul, South Korea Marcelo d’Amorim, Rui Abreu, and Carlos Mello

import pandas as pd
file1 = ? #fill hole (in)
df1 = pd.read_csv(file1)
file2 = ? #fill hole (in)
df2 = pd.read_csv(file2)
df3 = pd.concat([df1,df2],axis=1,sort=False)
filename = ? #fill hole (out)
df3.to_csv(filename, index=None)

Figure 2: Merging columns from two files with aligned data.

Section 3.1). Considering the code, note that it contains holes, ex-
pressed with “?”, that should be filled by the developer. The code in
the figure uses the Python Pandas library, which is very convenient
for the task of manipulating matrices. For this example, the devel-
oper needs to (1) indicate the input file name and to (2) indicate the
column name he wants to project. Sections 3.2 and 3.3 shows how to
identify the name of the column from the input image, which could
be used to bind the actual column name the user desires to project
and consequently avoid the need to create the hole for colName.

Figure 2 shows another wrangling operation. This time the goal
is to merge two different files into one file. The data in those files is
aligned. This example shows that we are not assuming that users
would write descriptions the same ways. Various kinds of differ-
ences can emerge. These are aspects that need to be taken into
account by the vision algorithms (Section 3).

2.2 Design of Neural Nets
Neural nets are an increasingly popular technology that enables
machines to learn. As in the previous example, data scientists spend
reasonable amount of time designing different network architec-
tures for different problems1; Visual Sketching can help reduce this
burden. The example on the left-hand side of Figure 3 shows two
alternative visual sketches of a very simple neural net architecture2.
This example highlights the power of Visual Sketching to produce
complex code based on visual descriptions. Many other network
architectures are possible. It is also worth noting that the Asimov
Institute [1] categorized various of these architectures and standard-
ized symbols to denote different kinds of neurons/nodes [4]. We
plan to take that into consideration to support rapid prototyping of
those nets.

3 Document Image Analysis - Segmentation
and Recognition

Visual Sketching needs to process images. As the image sketches
are essentially a composition of text elements, they can be treated
as documents [10]. Document Engineering is the research field
that studies how to process documents; it includes several special-
ized algorithms for analyzing this kind of file (image or not). More

1A senior researcher from Google UK reported to us in a personal communication that
up to 40% of his time is spent on this task.
2Based on an example that uses eight different parameters for diabetes classification [8]

in detail, Visual Sketching executes three steps to analyze an im-
age: (1) structural analysis of the document, (2) document image
segmentation, and (3) text recognition.

3.1 Structural Analysis
Let us consider the example from Figure 1 for illustration. Structural
analysis is an important step to define the type of structure of the
document for further processing. In this case, an image similarity
index could be considered. In particular, note that there are several
off-the-shelf solutions for that task, but in this case many aspects
can vary in the document image, e.g., the writing style, position
of the text, colors. Therefore, similarity algorithms based on the
structure of the document are more suitable for this purpose.

The first step in the structural analysis is thresholding the doc-
ument image. Thresholding is a common operation in document
image analysis where the input image—usually in greyscale—is
converted into a black-and-white image. A threshold value defines
which colors are converted into white (the background) or into
black (the foreground), corresponding to the text. For this purpose,
we plan to use the algorithm proposed by Howe [14], winner of the
Document Image Binarization Contest (DIBCO) in 2013 [18]. As
this operation can lose part of the characters, a flood fill algorithm,
as presented in [22], is needed. This algorithm closes small gaps
within black areas which is useful if part of the character is lost
because of thresholding. With the image represented in black-and-
white, the method proceeds to analyze the structure of the image.
For example, considering Figure 1, the method recognizes the origi-
nal data on the left, an arrow delimiter in the middle of the figure,
and the final text at the right column. Thus, in this case, we are
looking for a three-column structure.

A morphological operation of closing [11] is applied to group se-
quence of characters into a single object. As we are searching for the
basic structure of the document, details of the text can be ignored
(e.g., points and commas). After a connected components analy-
sis [19], the components with less than 500 pixels are removed 3.
This also removes noise elements.

A vertical projection profile is then performed to separate regions
with text from the regions without text. The profile counts the
number of black pixels in each column of an image. Columns with
a small number of black pixels indicate a column with no text and it
is labeled as such. Groups of few adjacent no-text columns between
regions of text are converted into text regions as they probably
contain parts of a character. On the other hand, groups of few
adjacent areas labeled as text are converted into no text areas as
they probably contain noise or non-relevant characters (as points
or commas). After this projection profile step, regions have been
identified and classified as either textual or non-textual areas.

As mentioned before, only three regions would be produced for
the visual sketch from Figure 1. At this point, these regions define
the structure of our sketch and could be used for image similarity.
Recall that, although off-the-shelf image similarity libraries could
be used, they would certainly perform poorly given the variety of
characteristics in human writing. Also, it must be said that other

3This value was also defined empirically and is related to the stroke width of the text
and can be defined automatically [17].

Visual Sketching: From Image Sketches to Code ICSE ’20, May 23–29, 2020, Seoul, South Korea

from keras.models import Sequential
from keras.layers import Dense
define the model
model = Sequential()
act = ? #option: 'relu', 'sigmoid', ...
model.add(Dense(12, input_dim=8, activation=act))
act = ? #option: 'relu', 'sigmoid', ...
model.add(Dense(8, activation=act))
act = ? #option: 'relu', 'sigmoid', ...
model.add(Dense(1, activation=act))
compile the keras model
myloss= ? #option: 'binary_crossentropy', ...
myopt= ? #option: 'adam', ...
model.compile(loss=mils, optimizer=myopt, metrics=['accuracy'])
load the training data
X = ? #inputs, NumPy (list of arrays)
y = ? #output, Numpy array
fit & evaluate
model.fit(X, y, epochs=150, batch_size=10)
_, accuracy = model.evaluate(X, y)

Figure 3: Neural net with 8 inputs, one output, and two hidden layers—one with 12 neurons/nodes and the other with 8 nodes.
All layers are fully connected, as the cross suggests.

structures will require other processing; this will be addressed in
the future.

3.2 Document Image Segmentation
Let us consider a case where Visual Sketching needs to extract some
part of the text from the input image. For the sake of illustration,
let us consider the string “Name” that appears at the top right of
Figure 1 needs to be extracted. Image segmentation is concerned
with identifying parts of the image that contain elements of interest.

Considering our example from Figure 1, the image has already
been split in three regions, the system works on the rightmost
region where that element is to be located. For this purpose, the
area is separated from others and the image is complemented. This
is a necessary step for the application of mathematical morphol-
ogy algorithms. An operation of dilation with a 20-pixels disk as
structural element is then applied, creating a large region where
the original text is contained. In a simple way, dilation is a mor-
phological operation that increases the area of a group of white
pixels in an image according to the structural element. For exam-
ple, a white single pixel could become a 3x3 group of white pixels
through dilation with a 3x3 square as strucutral element. We can
resemble the idea of a real dilation of an object (in opposition to an
erosion operation that decreases the area of an object). A bounding
box is defined as the minimum rectangle that contains an object.
Bounding boxes are created for every object in the region. For our
purpose, we select the uppermost box.

Figure 4 summarizes the process so far step-by-step on a similar
example to the one of Figure 1. Figure 5 shows the extraction of
text for different examples. Note that the extraction of the docu-
ment structure is a necessary step for extracting the text and such
structure is key to implement image similarity. As it can be seen in
this example, if the letters are close enough, they will be considered
as part of the same word.

Figure 4: Segmentation major steps: (a) Original sketch (al-
ready converted into a black and white image; (b) result-
ing image flood fill and closing operation; (c) result after re-
moval of small elements; (d) final projection profile image
(white areas corresponds to textual areas); (e) last column of
textual area; and (f) final segmented and selected text area.

3.3 Text Recognition
The last step is to recognize text segments, if necessary. This part
of the system is still under development in our prototype imple-
mentation, but we can leverage recent advances in deep learning
to precisely recognize text from drawings. Some promising results
can be found in [21][23][15].

4 Discussion
We make the following observations about Visual Sketching:
• Visual Sketching is not a silver bullet to avoid coding. It is more
useful in domains of application where it is more natural to
express intentions visually. The technique makes the hypothesis
that developers can complete the code associated with the visual
sketches. Conceptually, that is the inverse of the logic used in
Program Sketching [20] where developers are asked to write the
sketch of the code and a code synthesizer is used to complete the
holes left in the incomplete program.

ICSE ’20, May 23–29, 2020, Seoul, South Korea Marcelo d’Amorim, Rui Abreu, and Carlos Mello

Figure 5: (left column) Original sketches; (right column) fi-
nal text segmentation for further recognition.

• The wide adoption of development-oriented discussion forums,
such as StackOverflow, contributes to our approach rather than
competes with it. The identification of common patterns from
these forums can be used to feed the sketch database that we
plan to build.

• All the examples presented in this proposal produce code from
templates, rather than specifications [13], once a pattern is de-
tected. An additional functionality of Visual Sketching is to iden-
tifymore general patterns, such as arbitrary neural networkswith
custom symbols as those indicated by the Asimov Institute [1].

• We chose Python as the target programming language to demon-
strate Visual Sketching given its popularity in the data sciences,
web development, and various other domains. However, the de-
cision of programming language is not a central aspect of the re-
search. The biggest challenge is to identify developer’s intention
from visual sketches. In principle, other programming languages
can be supported by adding new template mappings.

• An assumption that we make with practical implications on
Visual Sketching is that the developer can easily transfer images
to his development environment. One alternative for that is to
use a digital pen or take a picture from a sheet of paper.

The main challenges of this research effort include:
• Tension between simplicity and expressiveness. Deciding
the right balance between simplicity and expressive power of the
visual sketches is one important challenge. We should determine
with care howmuch details of the code should be abstracted from
the developer. If too general, Visual Sketching becomes a Turing-
complete language not distinct from modern program languages.
If too specific, the developer may prefer to look for a solution
on the web as she would need to familiarize herself with the
language. We sincerely believe that deploying a fully-functional
prototype on the web can help decide this balance with the input
from the crowd.

• Selection of Algorithms and Efficiency. There is a vast array
of options of computer vision algorithms to use for solving each
of the problems we presented. Our plan is to first support specific

tasks as those described above and only later expand to let users
of our platform describe their own transformation patterns.

5 Conclusions
This paper presents Visual Sketching, a bold vision for a new re-
search direction on code synthesis. Visual Sketching is not yet
supported by solid results, but rather by preliminary results and a
strong intuition by the authors. We argue that we have discussed
an ambitious idea that requires synergies from a multidisciplinary
team in order to be successful. In particular, it integrates the Pro-
gramming Languages, Software Engineering, and Computer Vision
communities. Successfully achieving this bold vision would lead to
an impact on education and development productivity, mainly.
Acknowledgments.This researchwas partially funded by INES 2.0, FACEPE
grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17, CAPES grant
88887.136410/2017-00, and CNPq grant 465614/2014-0. At Portugal, the re-
search was funded through FundaÃğÃčo para a CiÃłncia e a Tecnologia
(FCT) with reference UIDB/50021/2020 and PTDC/CCI-COM/29300/2017.

References
[1] [n.d.]. The Asimov Institute website. https://www.asimovinstitute.org.
[2] [n.d.]. Brainscape. https://www.brainscape.com/subjects/computer-

programming-flashcards.
[3] [n.d.]. The Low-Code/No-Code Movement: More Disruptive Than You Realize.

https://tinyurl.com/yynmkxu5.
[4] [n.d.]. The Neural Net Zoo. https://www.asimovinstitute.org/neural-network-

zoo/.
[5] [n.d.]. Play Cards. Learns How to Code. http://codecards.io/.
[6] [n.d.]. PROSE SDK. https://microsoft.github.io/prose/.
[7] [n.d.]. Stateflow website. https://www.mathworks.com/products/stateflow.html.
[8] [n.d.]. Your First Deep Learning Project in Python with Keras.

https://machinelearningmastery.com/tutorial-first-neural-network-python-
keras/.

[9] A. Baker, E. O. Navarro, and A. van der Hoek. 2003. Problems and Programmers:
an educational software engineering card game. In ICSE. 614–619.

[10] Carlos Alexandre Barros De Mello, Adriano Lorena Inacio de Oliveira, and
Wellington Pinheiro Dos Santos. 2012. Digital document analysis and processing.
Nova Science Publishers.

[11] E.R. Dougherty. 1992. An introduction to morphological image processing. SPIE
Optical Engineering Press.

[12] Tim Furche, Georg Gottlob, Leonid Libkin, Giorgio Orsi, and Norman W. Paton.
2016. Data Wrangling for Big Data: Challenges and Opportunities. In Proceedings
of the 19th International Conference on Extending Database Technology (EDBT).
473–478.

[13] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1–119. https:
//doi.org/10.1561/2500000010

[14] Nicholas R Howe. 2013. Document binarization with automatic parameter tuning.
International Journal on Document Analysis and Recognition (IJDAR) 16, 3 (2013).

[15] R Reeve Ingle, Yasuhisa Fujii, Thomas Deselaers, Jonathan Baccash, and Ashok C
Popat. 2019. A Scalable Handwritten Text Recognition System. arXiv preprint
arXiv:1904.09150 (2019).

[16] Kapser, Cory. 2009. Toward an Understanding of Software Code Cloning as a
Development Practice. http://hdl.handle.net/10012/4753

[17] Shijian Lu, Bolan Su, and Chew Lim Tan. 2010. Document image binarization
using background estimation and stroke edges. International Journal on Document
Analysis and Recognition (IJDAR) 13, 4 (2010), 303–314.

[18] I. Patrikakis, B. Gatos, and K. Ntirogiannis. [n.d.]. ICDAR 2013 Document Image
Binarization Contest (DIBCO 2013). 2013 12th International Conference on
Document Analysis and Recognition (2013).

[19] Robert Sedgewick. 1900. Algorithms in C++, 3/e. Pearson Education India.
[20] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.

Berkeley, CA, USA. Advisor(s) Bodik, Rastislav. AAI3353225.
[21] C. Tensmeyer and C. Wigington. [n.d.]. Training Full-Page Handwritten Text

Recognition Models without Annotated Line Breaks. ICDAR 2019. https:
//arxiv.org/abs/1909.02576.

[22] Shane Torbert. 2016. Applied computer science. Springer.
[23] S. Xiao, L. Peng, R. Yan, and Wang. S. [n.d.]. Deep Network with Pixel-Level

Rectification and Robust Training for Handwriting Recognition. ICDAR 2019.
https://arxiv.org/abs/1909.02576.

https://www.brainscape.com/subjects/computer-programming-flashcards
https://www.brainscape.com/subjects/computer-programming-flashcards
http://codecards.io/
https://microsoft.github.io/prose/
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
http://hdl.handle.net/10012/4753
https://arxiv.org/abs/1909.02576
https://arxiv.org/abs/1909.02576
https://arxiv.org/abs/1909.02576

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Data Wrangling
	2.2 Design of Neural Nets

	3 Document Image Analysis - Segmentation and Recognition
	3.1 Structural Analysis
	3.2 Document Image Segmentation
	3.3 Text Recognition

	4 Discussion
	5 Conclusions
	References

