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Abstract

Monitoring-oriented programmingMOP) is a software development and analysis tech-
nigue in which monitoring plays a fundamental rolelOP users can add their favorite
or domain-specific requirements specification formalisms the framework by means of
logic plug-ins which essentially comprise monitor synthesis algoritfiongroperties ex-
pressed as formulae. The properties are specified togettied@clarations statingshere
andhowto automatically integrate the corresponding monitor ifi® system, as well as
whatto do if the property is violated or validated. In this paper presentfava-MOP,

an MOP environment for developing robustva applications. Based upon a carefully
designed specification schema and upon several logic piig-iva-MOP allows users to
specify and monitor properties which can refer not only t® thrrent program state, but
also to the entire execution trace of a program, includirgj pad future behaviors.

1 Introduction
It is relatively broadly accepted today that proper usagasstrtions and runtime
checking can significantly increase the quality and redbeecost of software de-
velopment. Most of the systems supporting assertions aligeochecking, how-
ever, tend to focus on contracts between interfaces or oplsiaimeckpoints, pro-
viding limited or no support for specifying and checking quex requirements
referring, for example, to past or to future events. Moreoweost of the cur-
rent approaches support, encourage and promatégaieunderlying requirements
specification formalism, assumed by its designers to becgaritly powerful to ex-
press properties of interest. Nevertheless, it is oftercéise that such “hardwired”
property specification formalisms cannot express naturatlitive properties of
certain applications, especially in domain-specific ceiste

Monitoring-oriented programmingMOP) was introduced in [7/9] as a formal
framework for software development and analysis, aimingdticing the gap be-
tween formal specification and implementation of softwgstesms. IlMOP, mon-
itoring is supported and encouraged as a fundamental pkadMonitors are au-
tomatically synthesized from formal specifications ancgnated at appropriate
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places in the program, according to user-configurablebates. Violations and/or
validations of specifications can trigger user-defined ctmtenstance error recov-
ery, outputting/sending of messages, or throwing of exeapt at various points
in the program.MOP allows users to insert their favorite or domain-specific re-
guirements specification formalisms \@gic plug-ins which can be essentially
regarded as monitor synthesizers for properties expresstmulae.

Our previous efforts in [7,9] focused on presenting theddandamental prin-
ciples ofMOP in a programming-language-independent manner. In thismpap
take a more pragmatic attitude and focusiem-MOP, an instance offOP whose
aim is to allow users to specify and verify at runtime safetyperties ofjava pro-
grams. Our current implementation ofva-MOP supports most, but not all, of
the desired features of OP. Future versions of the system will gradually incorpo-
rate the remaining features by need, driven by practicatex@nts. Java-MOP
builds upon our experience with another runtime verificatimd monitoring sys-
tem, NASAs Java PathExplorer [15], whose practicality baen testified in the
context of NASA applicationsiava-MOP is the basis for our experiments on code
instrumentation, on monitor generation and integratiawall as on the use of
MOP in practical applications.

Efforts have been recently invested in makinga-MOP a practical tool for
monitoring Java programs against requirements expressed in various fismms|
with full support for executing user-provided (recovergde when these require-
ments are violated or validated. In particular, followirng ttundamental idea of
keeping the three components of monitoring (observatibacking and recovery)
decoupled, we have devised a general meta-specificatigudge for adding re-
guirements specifications tava applications without modifying manually the na-
tive code. By analyzing such a user-provided meta-spetdital ava-MOP can
automaticallygenerate monitors together with corresponding recoveigres; and
can then integrate them into the original programs. We haeg luva-MOP on
a non-trivial case study, namely Sui’sva Carp API 2.1. Even though the tech-
niques discussed in this paper are specializedata, we believe that they are
general enough to apply to other object-oriented progrargrainguages.

This paper is organized as follows. Sectidn 2 introducesr¢aeer tojava-
MOP, by means of a simple example showing how one canvuse to detect and
recover from concurrency errors injava HTTP client application. Sectidn| 3 dis-
cusses related work. Sectioh 4 presentsithe-MOP tool. Sectiori b approaches
some implementation details, and, finally, Section 6 catedthe paper.

2 MOPin Java: A Simple Example

In this section we show a simple example wharep helps to increase the ro-
bustness of a software system through online detectiongufinements violations
caused by “unexpected” thread interleavings; moreovetge anviolation is de-
tected, user-provided recovery code is executed, thusctiefieMOP’s runtime
detect-and-recover capability. Figure 1 showsa code fragment of an HTTP
client taken from|[[6], which tries to request resources fiithi server and uses a
shared queue to keep track of waiting clients. The clientri@guests access to the
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server. If not granted, it adds itself into a waiting quetrel/ ) and then suspends
itself (/ *2*/), waiting for another client to resume it. If granted, it dats work
with the server and then it resumes a waiting client, if thesny waiting (*3*/).
The client continuously requests access to the server io@a [fo avoid dataraces,
the access to the waiting queue needs to be synchronized.

public class Htpdient extends Thread {

private static Vector suspendedCients = new Vector();
. irrelevant code ...

public void run() {

while (true) {
. request server access ...
if (laccessGanted) {
[*1*/ synchroni zed (suspendeddients) {
suspendedd i ents. add(t hi s);

}
[ *2*] suspend();
} else {
. work with server ...
synchroni zed (suspendedd ients) {
if (!suspendedCients.isEnpty()) {
[ *3*]/ ((H tpdient)suspendeddients.renpve(0)).resune();

133883

Fig. 1. Java code fragment of an Hittp client.

There are (at least) two subtle concurrency errors in trde cdhe firstis as fol-
lows. Suppose that a client’s access is denied for somernreesbthat, right before
it adds itself to thesuspendedd i ent s queue (ay*1*/), the thread scheduler de-
lays it so long that all other clients terminate their job.rGlient then continues and
adds itself to the waiting queue, but, unfortunately, there other client working
with the server to ever resume it. So that client will suspentll another client
hopefully comes and is granted access, to eventually regiuerstarved client.

The other concurrency error is as follows. Suppose thaeatdk denied access,
puts itself into the waiting queue, and then right afterasieg the lock but before
suspending itself (at*2*/) it is delayed long enough to allow another client to
remove it from the waiting queue and resume/ t3*/) — resume has no effect
if the thread is not suspended. Then the thread regainsot@mtd continues to
suspend itself. Now there is no information about its susjenin the waiting
gueue, so no other client will ever resume it: this clientuspended forever.

One could try to fix these concurrency errors by enforcingtathl atomicity,
such as by synchronizing the check for server access, thmggueue operation,
and/or the suspend action. However, besides the usuakefficipenalties, such
additional synchronizations are deadlock prone; in paldic sincesuspend does
not release the locks that the corresponding thread ha&leccurrence in a syn-
chronized section is almost equivalent to a deadlock. Aebsttlution could be to
reorganize the code to ugai t () andnoti fy() instead.

Both errors are difficult to detect during testing, and evardbr to locate their
causes. WhattOP provides here is a mechanism to detect and recover from these
errorsat runtime Without even having or understanding a particular impleme
tation of an HTTP client, one can state that a basic natucplirement for using
suspend andr esune is that, for any thread, calls touspend andr esune on
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the thread alternate and start witk@spend. This can be specified as a regular
pattern, namely suspend resune) *, disregarding any other irrelevant events.
Java-MOP can automatically generate and integrate a runtime chdckeéhnis re-
guirement, thus detecting the second bug above, in caseut®icsince it is caused
by a mis-ordering of calls: esune is called before a correspondisgspend.

Logi ¢ = ERE;

var int flag = -1;

Event suspend: called(void suspend()) {flag = 1;}
Event resume: called(void resunme()) {flag = 2;}

Formul a: (suspend resune)*
Vi ol ati on Handl er:
if (flag == 2) {
Systemout. println("resune() called before suspend() in HtpCient!
Addi ng client back to queue ...");
synchr oni zed(suspendedd i ent s) {
suspendedd i ents. add($t hi s);

} else {
System out. println("suspend() called again before
resune() is called in HtpQient!");
}

Fig. 2. JavaA-MOP specification with recovery

Figure[2 shows this requirement specifiediiva-MOP. Here the underlying
formalism is that of extended regular expressionBK), and that is stated first
using the keyword.ogi c. This way, Java-MOP knows which logic plug-in to
use for generating the monitoring code. Then the events tutorcare declared,
which form the atoms over which the requirements are thandtred as a regular
expression. Events declared usiogl | ed are examined within the context of
the callee and can also bind the arguments of the called whétndurther use in
warning messages or recovery (not the case here). One clanalecal variables,
such ag | ag, for use in the generated monitor and can associate acaogslava
code) to events. Here the actions are very simple, they etlhsf | ag variable to
recall the method-call that occurred last. The violationdier allows one to carry
out any task when the requirements are violated; errorrtiygoand/or exception
raising are just simple special cases. Here, for exampenibnitor recovers from
the error by adding the wrongly resumed thread back to théngagueue. Thus,
Java-MOP can not only help to locate errors, but also recover online.

The first concurrency error above, which is likely to selfaeer (when another
client is granted access), is, however, not fixed by the abave MOP specifi-
cation. This error yields a violation of a liveness propengmely that “any sus-
pended client will be eventually resumed”. Unfortunatelych unbounded liveness
properties ar@ot monitorablg27/12]. Nevertheless, one can use metric temporal
logic (MTL) [26] (see[35] for a monitor synthesis algorithm) to stabeibded live-
ness properties of the form “any suspended client will benexadly resumed it
seconds”. The generated monitor would check if a threadsisned seconds after
it suspends, and the violation handler would resume theeslahread.

Since the properties to check should follow the informalrsgments of a sys-
tem, they are expected to be independent from any impleti@mizetails, so they
can be provided by the system designers or analyzers everelibe implementa-
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tion process starts. Programmers then only need to proheeitlation handlers,
which can contain any recovery code suitable for the pdardmplementation.

In this example we have only discussed hawP can detect violations of trace-
related properties expressed using regular expressidns. worth noticing that
MOP is notlimited to regular expressions or to related formalismsy Apecifica-
tion language supported by a corresponding logic plug-mbmemployed.

3 Redated Work

There are many existing software development approachatzadeto MOP that
were a major source of inspiration and documentation to usatwhakes\iop
different is its generality and modularity with respecthe togics underlying spec-
ification requirements, which allow it to include other riamé¢ checking approaches
as special cases. In this section we mention some approawresclosely related
to MOP, and intuitively discuss their relationshipsNmP.
Assertion-based runtime checkingl’he use of runtime assertions in software de-
velopment is not new. [29] presents an annotation pre-gemdor C, named APP,
and discusses a classification of assertions. Design byr&oribBC) [22] was
proposed as a software design methodology, well suppartédfel [2], in which
specifications given as assertions/invariants in progea@sompiled into runtime
checks. There areBC extensions proposed for several languageass [5], sCon-
TtrACTOR [3], andJML [21] areDBC approaches forava. MonGen [14] is another
DBC monitoring approach for Java, aiming at checking consisamdesign pat-
terns specified as formal contracts|[33]. Howew@snGen assumes the monitors
are manually coded instead of being automatically gengrate

These techniques and tools have shown their strength itiggacHowever,
they can only reason about tarrentprogram state — they cannot support trace
requirements. Trace properties concern the sequencetes staher than only the
current state. In particular, safety and liveness arecatitequirements in concur-
rent systems and can only be specified in terms of prograresi@ee examples in
Section 2 and 5]4). Efforts have been made to support addqamoperties irbBC-
style approachesIML, for instance, provideghostand modelvariables that can
be used to store information from past states, but that éaigmequires the user
to manually translate the formal specification into progsarfhis makes the final
JML specification hard to understand and error-prongas 2.x provides support
for trace assertions in the style of CSPI[18], but can onlyodacstrings over the
method calls of a program. Moreover, all the above fusslanddifferentspecifi-
cation formalisms. However, all these different formalssfall under the uniform
format of logic plug-ins ilMOP. For instance, we have already implemented logic
plug-ins for significant subsets ofiss andJML (Sectiori 5.8).
Runtime verification(RV) [16/32] aims at providing more rigor in testing. Rv,
monitors are automatically synthesized from formal speaiibons. These moni-
tors can then be deployaidf-line for debugging, i.e., they analyze the execution
trace “post-mortem” by potentially random access to statesn-line for dynam-
ically checking that safety properties are not being vedladuring system execu-
tion. Java-MaC [20], JPaX [15], IMPaX [31], andEacLe [4] are such RV systems.
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Java-MaC uses a special interval temporal logic as the specificagioguage, while
JPaX andJMPaX currently support only linear temporal logi€acte is a finite-
trace general logic and tool for runtime verificatiomemporarL Rover [13] is a
commercial RV system based on metric temporal logic (MTI6] [@oecifications.

These systems, unfortunately, also have their specifitdtionalisms fixed.
While a fixed formalism to express requirements may seemadipgefor a tool
designer, experience tells us that there is no “silver Bulldgjic whose formulae
can naturally express any property of interest in any appba. We believe that
all the RV systems that we are aware of would become speatrines ofiOP,
provided that appropriate logic plug-ins are defined. In,fdee general ideas and
the modular approach underlyingoP are a result of our experience in the area
of runtime verification, and were motivated by our strongiast inunifying the
apparently different RV approaches.

Aspect-oriented programmingAOP) [19] is a software development technique
aiming at separation of concerns. An aspect is a module theatacterizes the
behavior of cross-cutting concerns. Aspects are compak#uee basic elements:
join point, point cut, and advice. The first identifies rel@vpoints in the control
flow of a program. A point cut represents several join poitsctsely in a single
abstraction, and an advice relates a point cut to an expresisat is evaluated
when control flow hits the join pointAOP provides a means to define behavior
that cross-cuts different abstractions of a program, awngidcattering code that
is related to a single concept throughout the code. One cderstand AOP as a
language transformation technique that mechanically mm$parently instruments
the code with advice expressions.

Although MOP’s most challenging part is the synthesis of monitors and in-
strumentation code from high-level specifications, thedngnce of a powerful
mechanism to facilitate the integration of monitors inte tmplementation can-
not be overstatedAOP provides such a mechanism. Our current implementation
of Java-MOP usesAspect] [1] as an instrumentation infrastructure: synthesized
monitoring code is wrapped as advices and therectJ is invoked to finish the
integration work. From amOP perspective, one can understavidP as asyn-
thesizer ofAOP advices However, it is important to note thatopP and AOP
are intended to solve different problemsLOP is tuned and optimized tmerge
specification and implementation via monitoring, whil&p aims atseparation
of concerns. Even thoughsrect]J providesiava-MOP with an elegant and rapid
mechanism to integrate monitors into an implementatiatp&s not provide every-
thing a powerfulMOP environment needs: in particulatspectJ does not provide
support for someiOP features such as atomicity of actions associated to events,
or property checks at every state change of a particulacbbje

4 Java-MOP

Java-MOP is anMOP development tool for Java. The major purpose.oir-MOP

Is to provide an infrastructure for combining formal speeifion and implemen-
tation by automatic generation of monitoring code and umsgntation of moni-
tored programs fosava. To accommodate the underlying pluggable logic frame-
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work, Java-MOP provides a general and extensible specification schenoayiat
users to specify properties using different formalismstaraptionally state how to
steer the behavior of the system when requirements ardetbta validated. This
schema is devised to fitwva, but is general enough to easily support other object-
oriented languages. This section focuses on the speaificathema of ava-MOP,
leaving the implementation details to the next section.

4.1 Standalone Specifications v.s. Annotations
We encourage users to proviglea-MOP specifications in separate files. However,

for users’ convenience, we also allow specifications to leddas code annota-
tions. This makes1OP look similar in spirit to other DBC-like tools, e.gJass

or JML. When annotations are used, thea-MOP front end generates a separate
specification file from the annotated source file.

The current tool supports only properties within the scdeaass. Therefore,
eachJava-MOP specification file corresponds toJava class, containing all the
properties concerning that class. Each property is fogngallen as ajava-MOP
specification that will be further turned into a monitor. &ig[3 shows the format
of aJava-MOP specification. Note thatava comments are allowed.

4.2 Specification Schema

/************** l_leadl ng Stal‘tS ****************/
[attribute]* <Type> <Nane> Logi c=<Logi ¢ Name> {
/************* Body Stal’tS ********************/
. Specification Body ...
/************* '_'andl er Stal’tS *****************/
[Violation Handler: ...handling the violation...]
[Validation Hander: ...handling the validated...]

}

Fig. 3. Syntax of theava-MOP Specification

The design of thgava-MOP specifications is mainly driven by the following
factors: uniformity in the use of various logics, ability control monitor behav-
lors, and compatibility with existing tools such as thosedzhon DBC. A formal
specification consists of three parts: the heading, the badythe handlers.
Theheadingis composed of optional attributes, type, name of the spatidin, as
well as the name of the underlying logic (the unique nametitjémg the corre-
sponding logic plug-in). We next discuss each of these irendepth.

Attributesare used to configure the monitor with different installateapabili-
ties. They are orthogonal to the actual monitor generatire important attribute
is st at i ¢, which states that the specification is related to the clastead of the
object. For a static monitor, only one instance is generatedntime and is shared
by all the objects of the associated class. By default, mondre non-static, mean-
ing that every object will be monitored individually. Theyn attribute requires the
monitor to run asynchronously. When omitted, the monitersrin synchronized
mode, forcing the system to wait until the monitor finishesabrk.

The type defines points in the execution where properties are checkedr
types are availablecl ass-inv, i nterface-constr, nethod, andcheck-
poi nt. The typecl ass-i nv states that the property is a class invariant and
should be checked whenever the referred fields are updatbd meferred methods
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are called.i nterface-constr denotes a constraint on the interface. It should
be checked at every observable state change, specificaipumdaries of public
method calls. It is similar to a class invariantiniL [21]. Thenet hod specifica-
tion is used to specify pre, post, and exceptional conditiona methodcheck-
poi nt specifications are placed inside the code and checked whetiesy are
hit during the execution. If theheckpoi nt specification is written in a separate
file, the programmer may place a reference to the name of afgation,/ / @
<speci ficati on name>, at the appropriate positions in the source code.

Thelogic nameused in the specification, e.gML or ERE, is needed in order
for Java-MOP to generate the monitor using the appropriate logic plug-in

The bodyof the specification formally specifies the desired propeits syn-
tax varies with the underlying logic. FanL and Jass specifications, we adopt
their original syntax except for the format of comments. 8e oan translateML
andJass specifications intdava-MOP simply by changing their headings and pro-
viding violation handlers. Properties written in logicatlexpress requirements
over traces of the program, such@iskE andLTL, need a different structure of the
specification body, like the one discussed in Sedtioh 4.3.
Thehandlersare provided by the user at the end of the specification tolaahd
violation and validation of the property. It is worth notittgat violation and vali-
dation of a formula areot complimentary to each other. For example, a property
stating “event A eventually leads to event B” would never ldated or validated.
To provide better support for error handlingya-MOP pre-defines some variables
which can be used in handlers. These give the handler thigyabilretrieve en-
vironment information, such as the current object refegefdc hi s), arguments
and the return value of a method call, as well as other infondo locate the
violation, such as the name of the monitored specificatind,s® on.

4.3 Specifying Trace Properties
Trace logics, such asRE andLTL, give users the ability to specify safety proper-
ties concerning the entire execution trace. Specifyindp $tace properties requires
a different structure of the specification body from thatdugecontract-based for-
malisms such asM1 andJass. Based on experience with runtime verification of
temporal properties, we devised a typical structure forbihey of the trace spec-
ification, which consists of two parts, as Figlte 4 shows. fiits¢ specifies how
to extract the abstract trace of the program, by declarimglipates and events
building the trace, along with some assistant variablese Jdtond is a formula
specifying the property, whose syntax is specific to the tguhg logic. It is worth
noting that, although we believe this structure is suitétenany trace logics, the
user can devise her own syntax for the logic that she addetoth-MOP tool.
There are two important aspects regarding the abstradtibie execution trace.
One is to define thebservation pointand the other is to extract the necesssate
information i.e., theabstract state Most types of MOP specifications have their
observation points fixed by design. But for the class invdrighe observation
points are implicitly determined by the specification, elgy the declaration of
predicates and events in the above example. Specificabysplecification should
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For Crui seController

cl ass-inv Crui seControl Behavi or Logi c=FTLTL {
[x****xxx gpeacification body (declarations) **x****/
var double x = 0;
event Control On: called(void On()) {x = $this.speed;}
event Control O f: called(void Of());
predicate i sNormal: ($this.speed < x+5) && ($this.speed > x-5);
[x*x**xxxx gpacification body (formulae) *****xxxxx/
/* After the cruise control is turned on, the speed should be */
/* kept within the cruise speed +/- 5 until the control is off. */
formula : ControlOn -> (isNormal U Control Of);
/*********** '_landl ers begln **********************/
Violation Handler: {
/1 if violated, try to restore the speed.
if ($this.speed > x) $this.brake() else $this.accelerate();
}
}

Fig. 4. A cruise control specification using future-timeelam temporal logic(FTLTL).

be checked at the end of calls to methads$) andof f () in the Cr ui seCon-
trol | er class (stated by theor keyword at the top of Figur 4) as indicated by
events, as well as at every update of sipeed field since it is referred from the

i sNor mal predicate.
The declaration of events follows the formagvent <nane> : <event

type> [ & <bool ean expression>] [action]. The following event types
are supportedupdat e(<fi el d>), cal | ed( <nmet hod>), begi n( <net hod>),

end( <net hod>), andexcepti on(<net hod>). The semantics of event types

is as follows. Forupdat e, an event is sent right after the corresponding field
assignment; focal | ed, an event is generated right before the method is called
in the caller’'s context (this may be necessary because sopgethe source code

of the method is unavailable, e.g., methods of the superdteest come from a
library); for begi n, an event is generated right before the beginning of the oaeth
execution; forend, when the execution of a method ends but has not returned;
for excepti on, when the method throws an exception and exits and before the
exception is caught. One can put additional constrainte@event. This is realized

by attaching a boolean expression that must be true whervéms is triggered.
Java-MOP also allows users to associate actions, declared withip otackets,

to monitored events as Figurlels 2 and 4 show. This strengtherexpressiveness
and effectiveness of the specification language. For exgripé in Figurd 2, we
may associate counters with events together with a regularession and thus
specify properties like “the trace contains as many As &s,Bvhich are beyond
the expressive power of regular languages. In general l@@es can associate
any action to events. This allows one to create orthogonalstauctures that can
be used to smoothly “wrap” an application and “observe” eatits execution
steps. In the example in Figurexis updated to the current speed when the cruise
control is turned on. This way we maintain threnitor state a necessary feature
in the support of parametric events.

Predicates are declared with the keyweprcdi cat e and follow the format:
predi cate <name> : <bool ean expressi on>. As discussed, for class in-
variants, predicates also indicate the observation pomasiely that class invari-
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ants should be checked every time when any of the variabks$ insghe defining
predicates are updated. Currently, due to limitations ehthp framework that we
use, only fields of primitive types are allowed in the classitant inJava-MOP.

Predicates and events are then used in the context of a f@amw@tomic propo-
sitions. When the observation point of interest is encaedtethe corresponding
monitor will evaluate these propositions based on the piogstate and the event
that it received, and then use their values to evaluate timeufia.

5 Implementation

Java-MOP provides both GUI and command-line interfaces for editing @ro-
cessing specifications. The tool can be obtained from ousite@3]. A web-
based interface is also available for the interested usexpgeriment online before
having to go through the installation process.

TheJava-MOP tool incorporates two functionalities: code generatiod aron-
itor integration. Code generation is encoded within lodiggins, andAsrect] is
used as an integration (instrumentation) mechanism. &qedly, the tool gen-
eratesAsperectJ aspects for specifications which are naeckpoi nt , and invokes
the AspectJ compiler to instrument the original program. In this sectiwe briefly
discuss the design and implementatiory ofa-MOP.

5.1 Architecture

To provide the extensiblity of1OP, we employ a client-server architecture style.
The client includes the interface modules and .the.-MOP specification proces-
sor, while the server contains a message dispatcher ammjdlg-ins forjava. The
message dispatcher takes charge of the communication éxetive client and the
server, dispatching requests to corresponding logic plag-The communication
can be either local or remote, based on the installationeo$énver. The advantage
of this architecture is that one logic server can provide itbogeneration services,
which can require intensive computation and/or searchutiiralready processed
formulae (for efficiency), to multiple clients. Besidesetblient is implemented
purely inJava and thus can run on different platforms, while some of thécleg-
gines, namely those for linear temporal logics amd:, are implemented in Maude
[11], an efficient meta-logic development tool which runstheénder Linux. This
architecture provides a more portable tool, since the thewl the server are al-
lowed, but not enforced, to run on different platforms.

The client provides both a command-line and a graphical iserface. The
command-line interface takes as input argument either @es®g ofiava files and
specification files, or a folder path that contains thesenTity@ocesses all thewva
file(s) found in the input path, generating files in which ntors are synthesized
and integrated appropriately into the original source cddierrently the GUI can
only handle annotatethva files. It is based on thecuirse platform [1]. We also
implemented a Web-based interface|[23] through which ometoajava-MOP
online without having to install it locally.

Java-MOP currently uses\spectJ for code instrumentation. Feheckpoi nt
specifications, monitoring code is inserted where the atioots were definedis-
pecTJ aspects are produced for all other kinds of specificatiomsvéver, note that
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Web Interface Graphic Command-line
Interface Interface

Specification
Processor
Local or Remote
Communication

Logic Server
Dispatcher

» L] N
Java Java Java Java
Shell for

Shell for Shell Shell
FTLTL PTLTL for Jass for IML

Java
Shell
for ERE

Logic }
Engine
for ERE
Fig. 5. The Architecture of ava-MOP.
Aspect] performsstatic code instrumentation, while monitoringdynamic This
may be inconvenient in some applications. For example, fdass invariant, one
may need to monitor every update of a field spacific instancef a class, instead
of monitoring all the updates to the field in all the objectshatt class.

5.2 Interfaces to Logic Plug-Ins

One important feature of thaOP framework is its extensibility, which allows the
user to add new specification formalisms by providing lodi@gns. In order to
support this feature, the input and output to a logic plughiould be in a standard
format. In Java-MOP, the input to the logic plug-in is simply the body of the
specification, while its output is composed of the following

Logic
Engine
for FTLTL

Logic
Engine
f

or PTLTL

Monitored variables. Fields in the class, whose updates should be monitored.

Monitored events. Events to monitor along with associated actions, followtime
syntax ‘<event Nane> [event definition] <actions>". The event def-
inition can be one ofet (vari abl e), cal | ed(met hod si gnat ure) orex-
ecuti on(net hod signature).

Declarations. Variables to maintain relevant state information, neededthfe next
monitoring step. These variables will be declared as newdiiel the class.

Initialization. A segment of program to prepare the monitor to start momigpri

Monitoring body. The main part of the monitor, which is executed any time the
observation point is reached.

I ntermediate declaration. Temporary variables needed by the monitor during the
verification process.

Success condition. Says when the monitored requirement has been fulfilled. When
this becomes true, the user-provided validation handIgb&iexecuted.

Failure condition. This gives the condition that shows when the trace violdtes t
requirements. When this condition becomes true, the ussiged “recovery”
code (given as the violation handler) will be executed.

Figure[6 shows the output of therLTL logic plug-in used in Figurel4. Thewa-
MOP specification processor will further translate this ouiptd Aspect] aspects.
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/1 Moni tored Vari abl es

$t hi s. speed; x;

/1 Moni tored Events

Control On[ called(void On()) 1:{

eventO=true; x = $this.speed;}

Control OFf[ called(void Of())]:{

event 1=true; }

/] Decl aration

int $state = 1;

| ocal bool ean event 0=fal se, event 1=fal se
//1nternedi ate Decl aration

bool ean i sNormal = ($this.speed < x+5) && ($this.speed > x-5);
bool ean Contr ol On=#event 0

bool ean Control O f =#event 1

// Moni toring body

switch ($state) {

case 1:

$state = ControlOf ? -1 : ControlOn ? isNormal ? 2 : -2 : -1; break ;
case 2:

$state = ControlOFf ?2 -1 : isNormal ? 2 : -2; break
}

/] Success condition

$state == -1
//Failure condition
$state == -2

Fig. 6. Output of the FTLTL plug-in for the specification ingeire 4.
5.3 Supported Specification Languages
Two kinds of specification languages are currently supplorieMOP: DBC-like
runtime checking languages suchJasL. andJass, and trace languages likeRE
andLTL. We next introduce them informally. Interested readersreder to our
technical report [8] for more technical details, includocgresponding algorithms.
JML and Jass. Both JML and Jass are Java specific, using Java syntax inside
specifications. This makes translation from specificatiochiecking code straight-
forward; separate logic engines are unnecessary in suel.cilserefore, the logic
plug-ins forJML andJass consist only of language shellsass has been defined in
a plug-in supporting state assertions. Most featurels.of except trace assertions
in Jass 2.X, are supported. For trace properties, we prefer tasiiseandLTL as
specification languagesiML provides a comprehensive modeling language with
some features that are difficult, sometimes almost imptesgdomonitor, for exam-
ple, theassi gnabl e clause[[21]. We therefore focused on defining those features
supported by theaML runtime checker in [10], including method specifications,
type invariants, and historic constrains. We do not supglostract specifications,
i.e., ghostvariables andnodelfields, but note that declaring and using variables
inside specifications is supported in a more general fashiorop.

ERE. Regular expressions provide an elegant and powerful spatifn lan-
guage for monitoring requirements, because an executame tof a terminating
program is in fact a string of states. The advantage of regxpressions over
many other logics is that they are a standard form of notatomhich many peo-
ple have already been exposed. Extended regular expreggien) add comple-
mentation, or negation, to regular expressions, allowimgto specify patterns that
mustnot occur during an execution. Complementation gives one tinepto ex-
press more compactly patterns on traces. However, complatien leads to a
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non-elementary exponential explosion in the number ogstaf the correspond-
ing automaton if naiv&ERE monitoring algorithms are used. Preliminary efforts
in [28/30] show how to generate efficient monitoring aldars forERE. A logic

engine forERE and its correspondingava plug-in have been implemented.
LTL. Temporal logics and its variations prove to be favorite falisms for

formal specification and verification of systems|[24]. Safaoperties can be nat-
urally expressed using temporal logics, so these logicsatsnbe very useful in
MOP. Based on work in_[17] and [27], we implemented logic engiaed corre-

sponding language shells fokva to support variants of temporal logics.

5.4 Case Study
We evaluated the effectiveness bfva-MOP on Sun’s standardjava Carp API

2.1 informal specification and the reference implementatiat.[®ur case stu@
was initially motivated by an already existingiL specification[[25]. The analysis
carried out in this case study illustrates the strength ohlmaing specification
formalisms, such asML, ERE andLTL in this case. The resulting specification
is more comprehensive and more concise when appropriateafisms are used
for different properties. Another interesting observatio this case study is that,
while monitoring contracts of classes is quite heavy and graatly impact the
performance in many cases, monitoring temporal properigs safety properties
about orders of method calls, is usually relatively littestty because it requires
few observation points as well as simple processing actiomst of which just
simple state transitions. Moreover, violations of temppraperties are very likely
to be corrected at runtime by proper usage of handlers. Thmplete case study

report can be found on our website [23]. Here we only presamiesconclusions.
Java Carp API 2.1 consists of four packages, namelygva. | ang with 12

classesj avacar d. securi ty with 17 classes and interfacggvacard. fr ane
wor k with 18 classes and interfaces, and an optigrmalacar dx. cr ypt o pack-
age. The corresponding specification from|[25] presentsfanmal description of
requirements for the implementation. As in [25], our studguses on the APIs
constraints, putting aside the functional specificationd properties related to
lower level details. In addition to straightforward preadiions, post-conditions,
and exceptional conditions, our review reports around #&@ar properties, most
of which are history-related constraints on the methodsd8lD out of 40). There-
fore, allowing the use of logics such as ERE or LTL providesaerconcise and
dependable way to formally specify and check time-relateg@rties at runtime,
significantly improving the expressiveness of the specibioa

6 Conclusion and Future Work

A software development tool supporting monitoring orieilfpeogramming {1OP)
in the context ofiava has been presented, calleda-MOP. Following the general
philosophy ofMOP, our tool supports several requirement specification ftismes
and can easily be extended with new ones, provided thatsmoneling logic plug-
ins are supplied. Several examples were discussed, shtvamgactical feasibility
of the approach in spite of its generality. Interesting fatwork includes support

2 We warmly thank Sophie Quinton of her help with this casestud
13



CHEN, D’AMORIM AND ROSU

for specifying global (cross class) properties, which isded for many applica-
tions including thejava Carp case study. Another interesting avenue for further
investigation is to use static analysis as a means to rethecauhtime overhead:

if a specification, or part of it, can be proved staticallygritone does not need to
generate the corresponding monitor, or can generate a rfilmierd one.
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