
Fault-Localization Using Dynamic Slicing and

Change Impact Analysis

†Elton Alves, ‡Milos Gligoric, ‡Vilas Jagannath, and †Marcelo d’Amorim
†Federal University of Pernambuco, Brazil

‡University of Illinois at Urbana-Champaign, USA
†{erma,damorim}@cin.ufpe.br, ‡{gliga,vbangal2}@illinois.edu

Abstract—Spectrum-based Fault-Localization tools, such as
Tarantula, have been shown to be effective at guiding developers
towards faulty statements in a system under test. This paper
proposes the use of dynamic slicing to improve spectrum-based
fault-localization. We show that when change information is
available results can be further improved.

I. INTRODUCTION

Spectrum-based fault-localization is an automated approach

for assisting programmers with quick localization of errors

made during development. Tarantula [1] is one reference

implementation for this approach. It takes as input the test

suite coverage information and outputs covered statements

ranked in order of suspiciousness (according to some metric).

Conceptually, statements that appear relatively more often in

failing runs than passing runs are considered more suspicious.

The typical estimate of inspection cost is given by the number

of statements the user needs to inspect in ranked order before

finding the error. Unfortunately, Tarantula often reports a large

number of statements that have to be inspected [2]. Our

goal is to reduce the inspection cost of Tarantula without

significantly increasing computational cost. We propose the

use of additional analysis information that enables the removal

of likely non-faulty statements from Tarantula’s ranking.

II. TARANTULA

Tarantula is a technique that uses code coverage informa-

tion, obtained from a test suite run, to help developers localize

faults efficiently [1]. As the input, Tarantula accepts a test suite

and a subject under test (SUT). As the output, if there is at

least one failing test, it produces a ranking of the statements in

the SUT based on a measure of suspiciousness. The higher a

statement appears in the ranking, the higher its importance is to

the reproduction of a bug. Tarantula instruments the program

to collect statement coverage and calculates a measure of sus-

piciousness (according to some heuristics) for each statement

based on the coverage information and the pass/fail result of

each test run. The technique generalizes to other types of cov-

erage metrics, such as branch or def-use [2]. Abreu et al. [3]

and Santelices et al. [2] found empirically that the Ochiai

measure was the most effective to determine suspiciousness.

Santelices et al. [2] define suspiciousness of a statement s as

susp(s) = failed(s)/
√

totfailed ∗ (failed (s) + passed(s)) ,

where failed (s) denotes the number of failing tests that cover

statement s; passed(s) denotes the number of passing tests

that cover s and; totfailed denotes the total number of failing

tests. We refer to inspection cost in this paper as the number of

statements that need inspection in the ranking before finding

the fault.

A. Example

We use a faulty implementation of a data-structure and

a fault-revealing test to illustrate how the techniques work.

Figure 1 shows the outline of a class implementing a binary

search tree. The BST class uses an inner class, called Node,

to encapsulate the contents of the tree node. The field root

points to a root node of a tree, and the field size stores the

number of nodes. As usual, values in the left subtree of a given

node should be less than that node’s value; and in the right

subtree values should be greater. Figure 1 shows two versions

of the insert method. The lines labeled with “V1” belong

to the original (correct) version of the code. The modified

version is obtained by removing those lines and adding lines

labeled with “V2”. The original version of the code permits

duplicates in a tree. The buggy version is a result of an attempt

to exclude duplicates. Unfortunately, this change introduces a

bug. Instead of using the relational operator > at line 23 the

operator >= is used. The test below reveals a violation of the

“no-duplicates” rule due to the bug.

BST bst = new BST(); bst.insert(3);

bst.insert(3); assert(bst.size==1);

Table I shows statement coverage for five test cases that are

executed on the buggy version of the running example. Each

test case under column “Test Cases” consists of a sequence of

calls to the insert method and an assertion that checks the

size of the tree. For example, “3 3” is a shorthand for the test

above. As it can be seen only this test reveals the fault. We

use a black circle to indicate coverage of a statement (column

“Stmt”) during the execution of a test case (under the group

“Test Cases”). Column “Susp.” shows the suspiciousness score

calculated for each of the statements according to the Ochiai

metric and column “R0” shows the rank of each statement. In

this case, the faulty line 23 appears in the first rank with a

suspiciousness score of 70.7%. This rank includes a total of

4 lines, which is the cost of Tarantula. Columns “R1”, “R2”,

and “R3” show the rank yielded by the proposed techniques.

1

TABLE I
RANKING OF BST STATEMENTS FOR A SUITE WITH 4 TEST CASES.

Stmt
Test Cases

Susp.
Ranks

5 4 3 2 6 7 8 3 3 R0 R1 R2 R3

6 • • • • 0.500 13 10 - -

10 • • • • 0.500 13 10 - -

11 • • • • 0.500 13 10 - -

12 • • • • 0.500 13 10 - -

13 • • • • 0.500 13 - - -

14 • • • 0.577 8 6 - -

15 • • • 0.577 8 6 - -

16 • • • 0.577 8 - - -

17 • 0.000 20 - - -

18 • 0.000 20 - - -

19 • 0.000 20 - - -

20 • 0.000 20 - - -

21 • 0.000 20 - - -

23 • • 0.707 4 3 3 1

24 • • 0.707 4 3 3 -

25 • • 0.707 4 - - -

26 • • 0.707 4 3 3 -

27 • 0.000 20 - - -

28 • 0.000 20 - - -

32 • • • 0.577 8 6 4 -

1 c l a s s BST {
2 Node r o o t ; i n t s i z e ;

3 s t a t i c c l a s s Node {
4 i n t v a l u e ; Node l e f t , r i g h t ;

5 Node (i n t v a l u e) {
6 ∗ , cd , d t h i s . v a l u e = v a l u e ;

7 }
8 }
9 vo id i n s e r t (i n t v a l u e) {
10 ∗ , cd i f (r o o t == n u l l) {
11 ∗ , cd r o o t = new Node (v a l u e) ;

12 ∗ , cd , d s i z e ++;

13 re turn ;

14 ∗ , cd } Node c u r r e n t = r o o t ;

15 ∗ , cd whi le (true) {
16 i f (v a l u e < c u r r e n t . v a l u e) {
17 i f (c u r r e n t . l e f t == n u l l) {
18 c u r r e n t . l e f t = new Node (v a l u e) ;

19 break ;

20 } e l s e {
21 c u r r e n t = c u r r e n t . l e f t ;

22 }
23 V1 /∗ } e l s e { ∗ /

23 V2,∗ , cd } e l s e i f (v a l u e >= c u r r e n t . v a l u e) {
24 ∗ , cd i f (c u r r e n t . r i g h t == n u l l) {
25 ∗ c u r r e n t . r i g h t = new Node (v a l u e) ;

26 ∗ , cd break ;

27 } e l s e {
28 c u r r e n t = c u r r e n t . r i g h t ;

29 }
30 V1 /∗ } ∗ /

30 V2 } e l s e { re turn ; }
31 }
32 ∗ , cd , d s i z e ++;

33 }
34 }

Fig. 1. BST faulty insert method.

III. APPROACH

Our goal is to improve Tarantula’s inspection cost. To

achieve this goal we exploit the fact that Tarantula can report

uninteresting statements at high ranks as it cannot recognize

statements that although covered are irrelevant to provoke

failure. We propose techniques that inform Tarantula which

statements out of those covered by failing test runs are relevant

to the failures, and hence should be considered for ranking.

They vary in the criteria used for pruning. Note that the

pruning in itself does not imply reduction of inspection cost

as each ignored statement can appear above or below the rank

of the faulty statement that Tarantula originally reports.

Fault-Localization Using Dynamic Slicing. First technique

prunes from Tarantula’s ranking all the statements that do not

appear in the dynamic slice [4] associated with the incorrect

value passed to an assertion that fails. Such statements do not

influence the value that causes a test to fail. Example: In the

running example, a total of 10 statements (out of 20 covered)

have been pruned with the slice associated with the value of

bst.size. All statements that are removed but 1 have score

smaller than that of the faulty statement; statement 25 has the

same score as the faulty statement (0.707). With the removal of

this statement, the cost reduces to 3. Column “R1” in Table I

shows the ranking obtained with this technique.

Fault-Localization Using Change-Impact Analysis. Second

technique builds on the first to further reduce inspection cost.

It looks for a set of statements that not only influence the

computation of the values that leads to failure but also have

been impacted by changes. The technique ignores statements

from Tarantula’s ranking which are not in this impact set. To

obtain this set, we use change-impact analysis at the statement-

level; this is implemented on top of a dynamic slicer. This

technique does not assume that the fault is among changes. In

a scenario where a benign change activates a residual fault [5]

resulting in a test failure, all statements impacted by change

would appear in the set. This impact set includes all statements

that have been involved in the construction of values that:

(a) have been dynamically influenced by changes (backwards)

and (b) influence the value of interest (forward). Example:

Column “R2” in Table I shows the ranking obtained with

this technique. It did not improve over the first technique.

It is important to note, however, that effectiveness of each

technique depends on a number of factors not explored in this

simple example, e.g., the amount of changes and how they

propagate to failure.

Fault-Localization Using Slicing and Change Filtering.

We also evaluated the technique that filters from Tarantula’s

ranking those lines that influence the computation of the value

that leads to failure and also have been changed. In contrast to

the previous technique, it makes the assumption, often used to

evaluate testing and debugging techniques [6], that the error

is among the changed statements: in principle, it may result

in loss of residual (latent) errors introduced in older evolution

cycles and not detected with the test suite [5]. Column “R3”

in Table I shows the ranking obtained with this technique.

Example: In our example, the use of this technique reduced

inspection cost to 1 statement.

IV. EVALUATION

This section presents and discusses experimental results.

Subjects. We used 50 subjects in total. The subjects were

obtained from 2 applications from the Software-artifact Infras-

tructure Repository (SIR) [6] (jtopas[1-6] and ant[1-4]) and 6

applications in the Siemens benchmark [7] (print tokens[1-5],

print tokens2[1-7], tot info[1-10], tcas [1-9], schedule[1-6],

and schedule2[1-3]). We chose these applications since they

have been used before in other studies using Tarantula.

2

Fig. 2. Percentage reduction of inspection cost using dynamic slice(s).

A. Fault-Localization Using Dynamic Slicing

Setup: We considered two scenarios of use of Tarantula with

dynamic slicing. The first scenario assumes the user will not

tolerate a possibly long wait for results. To simulate this

scenario we make the analysis to use the dynamic slice from

only one failing test. The second scenario we considered

assumes that the user is willing to tolerate a longer delay.

To simulate this scenario we make the analysis to use the

combination of dynamic slices from all failing tests. The

results of these experiments are measured in terms of improve-

ment in estimated inspection cost. We measure improvement

with the size of the intersection between two sets. The first

set includes all statements considered to compute Tarantula’s

original cost while the second set includes sliced statements.

When considering multiple failing tests, the second set is the

intersection across all slice sets.

Results: Figure 2 summarizes the results of the experiments.

Each bar in the figure corresponds to one subject. The height of

the lower/darker bar indicates the average percentage reduction

in inspection cost obtained by using the dynamic slice from

a single failing test. It is calculated as (y − x̄)/y, where

y corresponds to Tarantula’s original inspection cost and

x̄ is the arithmetic mean of the improved inspection costs

considering the dynamic slices from various choices of failing

tests. The dashed horizontal line shows the average over all

these bars. The height of the higher/lighter bar indicates the

additional improvement in inspection cost that can be obtained

by combining the dynamic slices of all the failing tests to

improve Tarantula. The continuous horizontal line shows the

average over all these bars.

Inspection Cost Reduction: Results indicate that using the

dynamic slicing reduced inspection cost for 46 of the 50

subjects (92%). The only 4 subjects for which inspection cost

did not reduce were those for which Tarantula’s associated cost

was already very low (<4LOC). Inspection reduced 33%, on

average, when considering one failing test. Using slices from

all failing tests reduced the inspection cost further, on average

by 44%.

Absolute reduction: We observed that the absolute reduction

in inspection cost is more significant when Tarantula’s original

cost is high. For example, considering slices from individual

failing tests, the inspection cost for print tokens(4) reduced

from 211 to 124 statements, on average. With the combination

of all slices of failing tests, inspection cost reduced to 72

statements.

Larger Apps and Slices: We observed that for larger applica-

tions the size of dynamic slices was often higher. However, this

did not preclude reductions in inspection cost. For large sub-

jects, test execution often covers a large number of statements

and Tarantula’s inspection cost also tends to be larger. For

example, even though jtopas(5) produced relatively large slices

(>300 statements on average), reduction in inspection cost was

significant. Considering slices from individual failing tests,

Tarantula’s original inspection cost of 57LOC was reduced by

60.3%, on average. Considering the combination of slices from

all failing tests, the inspection cost was reduced by 91.2%, the

largest reduction across all subjects (highest bar in Figure 2).

Variance in Reduction: For a given subject we observed that

the size of dynamic slices obtained from different failing tests

can vary significantly even though the failures are caused

by the same fault. This occurs due to the variation in the

dynamic dependencies observed across various test executions.

The combination of dynamic slices from all failing tests takes

advantage of this to further reduce inspection cost. In the

worst case, the improved inspection cost is equivalent to the

minimum inspection cost in the distribution.

Additional Computational Cost: For all subjects considered

except ant, execution of one test in slicing mode terminated

very quickly (<2s) and consumed low amount of memory

(<50MB). For ant, the execution of one test in slicing mode

took, on average, 9s (median=6s) and consumed 57MB (me-

dian=56MB) compared to 2s (median=2s) and 29MB (me-

dian=31MB) in the standard, non-slicing mode.

B. Fault-Localization Using Change-Impact Analysis

Setup: We evaluated the effect of using change-impact analy-

sis across two different evolution periods. First, we considered

longer evolution periods during which subjects were changed

significantly. In this scenario, we used the period between two

releases of SIR subjects. Second, we considered shorter evo-

lution periods during which subjects were changed very little.

For these experiments we used the Siemens subjects. Since

the Siemens benchmark does not contain multiple releases,

we simulated evolution by asking an external developer to

refactor the subject code. For both scenarios of evolution we

considered the use of one or all failing tests to compute slices

and measured the impact on inspection cost and computational

cost. We compare results of the change-impact analysis com-

bination with dynamic slicing combination. Change-impact

analysis requires information of change across two code

version. To obtain the diff we used the DiffJ open-source tool

(see http://www.incava.org). DiffJ compares the abstract

3

syntax trees of compilation units as opposed to plain text

which improves the accuracy of the comparison.

Results for longer evolution periods: In this scenario, we

considered the period between two releases of a SIR subject.

Inspection Cost Reduction: Compared to dynamic slicing,

change-impact analysis reduced the size the slices for 6 out

of 10 cases, with an average reduction of 58%. Unfortunately,

the use of change-impact analysis further reduced inspection

cost (compared to dynamic slicing) only for ant(1), and the

reduction was very small (2 statements). For the other 5

subjects, dynamic slicing combination already performed well.

Additional Computational Cost Reduction: For jtopas, no

improvement on computational cost was noticed: execution in

slicing mode already finishes fast and consumes low memory.

For ant subjects, where computational cost is higher, the

average reduction is significant: from 57MB in full slicing

mode to 35MB in change-impact mode and from 9s in full

slicing mode to 4s in change-impact mode.

Results for shorter evolution periods: In this experiment,

we used the Siemens subjects with simulated evolutions. The

simulated evolutions were performed by an external developer

by refactoring 5, 10, and 15% of the original code. We

validated that the changes were indeed refactorings by using

the subject tests. In these experiments we considered only

subjects for which the original inspection cost was more than

10 statements. Table II compares the improved inspection costs

for these subjects using dynamic slicing vs. change-impact

analysis. Column “T+DS” shows the improved inspection cost

achieved by using dynamic slicing and the other columns show

the improved inspection cost achieved by using change-impact

analysis with 5 and 10% changed code. We omit the setup with

15% changed code since there was no improvement compared

to 10%. Numbers outside parentheses (respectively, inside)

correspond to the average of inspection costs when using the

slice from one failing test (respectively, all tests).

Inspection Cost Reduction (one test): Considering the slice

from a single failing test, the absolute reduction for

print tokens2 and schedule was very small. We marked

the rows for these subjects in grey color. For print tokens,

tot info, tcas, and schedule2 reduction was more significant.

For print tokens we observed that, as we move from 5 to 10%

of changed code, the results of using change-impact analysis

improve. This occurs due to a reduction in total number of

statements in the program due to refactoring.

Inspection Cost Reduction (multiple tests): Considering the

combination of slices from all failing tests, the reduction was

significant for all cases with the exception of print tokens2

and schedule. The best results appeared in print tokens and

schedule2. For example, on 5% of changes, average cost

for the schedule2 case reduced from 24.67 (for Tarantula +

Slicing) to 6.67 (for Tarantula + Change-impact).

Additional Computational Cost: As for computational cost,

we did not observe significant improvement compared to the

cost of using dynamic slicing since the cost was already small

for Siemens subjects.

TABLE II
IMPROVING TARANTULA WITH DYNAMIC SLICING (T+DS) VS.

IMPROVING TARANTULA WITH CHANGE-IMPACT ANALYSIS (T+CI).

name T+DS T+CI (5%) T+CI (10%)

print tokens 117.32 (63.50) 103.99 (42.00) 101.96 (42.00)
print tokens2 16.19 (3.50) 15.79 (3.50) 15.79 (3.50)

tot info 24.61 (21.50) 10.20 (8.40) 14.34 (12.40)
tcas 30.30 (27.50) 10.59 (8.50) 12.97 (10.50)

schedule 26.19 (23.50) 21.19 (18.50) 23.69 (21.00)
schedule2 34.64 (24.67) 23.48 (6.67) 28.08 (17.00)

C. Fault-Localization Using Slicing and Change Filtering

We also evaluated the use of change filtering on top

of dynamic slicing. We compared the effect of using this

lossy approach with the conservative alternative of using

change-impact analysis. The benefit of change filtering for

SIR subjects was marginal. There was a small improvement

only for ant(1) when inspection cost reduced from 33 to 8

statements. For Siemens subjects, which contain a smaller

number of changes, the reduction was significant. Considering

both scenarios of 5 and 10% of changed code and the use

of a slice from one failing test, inspection cost was below 7

statements for all subjects. As the costs were already very low

the impact of combining slices from all failing tests was not

as significant as in the other scenarios.

V. CONCLUSIONS

This paper shows that dynamic slicing can be effective

to improve performance of spectrum-based fault-localization.

When change information is available, improvement can be

further magnified. We show the effect of a conservative adap-

tation of the slicer that takes code changes into account and

an unsafe adaptation that just filters the changed statements

from the reported slice sets. Combination of dynamic slicing

with other fault-localization techniques have been proposed in

the past [8], [9]. To the best of our knowledge this is the

first combination that uses Tarantula and considers change

information as another dimension of improvement.

Acknowledgments. This work was partially supported by the

National Institute of Science and Technology for Software

Engineering (INES: www.ines.org.br).

REFERENCES

[1] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in ICSE, 2002.

[2] R. A. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in ICSE, 2009.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy of
spectrum-based fault localization,” in MUTATION, 2007.

[4] F. Tip, “A survey of program slicing techniques,” Journal of Programming

Languages, vol. 3, 1995.
[5] P. Nagahawatte and H. Do, “The effectiveness of regression testing

techniques in reducing the occurrence of residual defects,” in ICST, 2010.
[6] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experi-

mentation with testing techniques,” Springer ESE, vol. 10, 2005.
[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the

effectiveness of dataflow and control flow-based test adequacy criteria,”
in ICSE, 1994.

[8] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” in PLDI, ser. PLDI ’06, 2006, pp. 169–180.

[9] F. Wotawa, “Fault localization based on dynamic slicing and hitting-set
computation,” in QSIC, ser. QSIC ’10, 2010, pp. 161–170.

4

