
An Empirical Analysis of Cross-OS Portability
Issues in Python Projects

Denini Silva
Federal University of Pernambuco

Recife, PE, Brazil
dgs@cin.ufpe.br

MohamadAli Farahat
North Carolina State University

Raleigh, NC, USA
mfaraha3@ncsu.edu

Marcelo d’Amorim
North Carolina State University

Raleigh, NC, USA
mdamori@ncsu.edu

Abstract
While Python is designed as a cross-platform language, real-world
applications encounter portability failures when deployed across
different operating systems.

We present the first large-scale empirical study of cross-OS porta-
bility issues in Python, analyzing 2,042 open-source repositories
using two complementary approaches: systematic cross-OS test re-
execution andmanual analysis of GitHub issues. Our cross-platform
testing of 500 projects reveals that 11.2% exhibit OS-dependent
test failures. Through systematic analysis of 240 GitHub issues,
we confirm 102 genuine portability problems spanning 95 addi-
tional projects. We develop a comprehensive taxonomy identify-
ing 7 primary failure categories—with file/directory operations,
process management, and library dependencies being most preva-
lent—along with 24 distinct sub-categories, 15 diagnostic signatures,
and 4 systematic repair patterns. Our evaluation reveals that ex-
isting static analysis tools provide minimal support for portability
detection, while large language models achieve 40–79% accuracy
in identifying issues and 50–77% success in generating fixes when
provided with structured guidance. Through 33 contributed pull
requests, we demonstrate practical applicability and developer ac-
ceptance (17 merged, zero rejected) of our findings.

This work establishes the first comprehensive baseline for un-
derstanding and addressing cross-OS portability issues in Python,
providing actionable insights for developers, tool designers, and
the broader research community.

CCS Concepts
• Software and its engineering→ Software verification and
validation; Functionality.

Keywords
Cross-Platform Portability Issues, Python Tests, Large Language
Models.

ACM Reference Format:
Denini Silva, MohamadAli Farahat, and Marcelo d’Amorim. 2026. An Em-
pirical Analysis of Cross-OS Portability Issues in Python Projects. In 23rd
International Conference on Mining Software Repositories (MSR ’26), April
13–14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3793302.3793373

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2474-9/2026/04
https://doi.org/10.1145/3793302.3793373

1 Introduction
A portability issue refers to an observable difference in a program’s
behavior that arises from variations in the underlying platform—for
example, inconsistencies in API implementations across platforms.
Python is widely regarded as a cross-platform language, powering
applications across diverse domains such as data science, web de-
velopment, and automation. It consistently ranks among the most
popular programming languages today [1, 2, 36]. However, platform
portability is not guaranteed. Mince et al. [27], for instance, reported
that roughly 40% of the functionality in popular machine learning
libraries (e.g., PyTorch [30]) behaves inconsistently across hardware
platforms such as CPUs and TPUs. Similar challenges occur at the
operating-system level; for example, the function os.geteuid() is
unavailable in Windows distributions of Python [11].

Portability issues in software projects often arise from dependen-
cies on platform-specific APIs, system libraries, and environment
assumptions. These issues commonly lead to deployment failures
when software is executed in environments differing from those
used during development or testing. Consequently, developers must
spend substantial time diagnosing and adapting code, which neg-
atively impacts productivity and delays releases. Prior work has
shown that the availability and usage of platform-specific APIs can
directly affect the portability and reliability of software systems [19].
Industry reports further emphasize that ensuring code portability
requires deliberate cross-platform design, testing, and maintenance
practices [20]. Systematic investigations indicate that defining and
quantifying portability remains a persistent challenge in software
engineering, with nowidely adoptedmetrics or automatedmeasure-
ment frameworks [15]. Moreover, empirical studies have connected
portability-related inconsistencies to unstable or flaky test behavior,
complicating continuous integration pipelines and further burden-
ing developers [24, 43]. Container technologies such as Docker [8]
and Singularity (now Apptainer) [21] can address software portabil-
ity challenges by encapsulating code, dependencies, and execution
environments into reproducible units. They minimize configuration
discrepancies across platforms and facilitate consistent testing and
deployment. Nevertheless, despite the clear benefits of containeriza-
tion, most open-source Python projects remain non-containerized.
In our analysis of 2,042 GitHub repositories, we find that only 19.9%
included a Dockerfile or Docker Compose configuration.

This paper presents a study of cross-OS portability issues in
Python projects. Specifically, we analyze 2,042 repositories to as-
sess the prevalence of such issues, their characteristics (e.g., symp-
toms, root causes, and fixes), the effectiveness of existing tools
(e.g., static analyzers and large language models) in detecting and
repairing them, and developers’ reactions to the 33 pull requests

https://doi.org/10.1145/3793302.3793373
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793373

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.

we submitted to address portability issues in their code. Our analy-
sis reveals that these portability failures, while widespread (11.2%
of tested projects), are not chaotic or unpredictable. Instead, they
cluster around 7 main root-cause categories and 24 well-defined
sub-categories—with file and directory operations, process man-
agement, and library dependencies being most prevalent. Results
indicate that a combination of test re-execution and LLMs can com-
plementarily detect issues, with LLMs achieving 40–79% accuracy
in detection and 50–77% success in repair when provided with
structured guidance. We conclude with a set of lessons we learned.

This paper makes the following contributions:

★ A study about the prevalence of portability issues that use two
complementary methods to identify issues: test re-execution
and mining of issues with subsequent manual analysis;

★ A detailed categorization of symptoms, root causes, and fix
patterns of portability issues;

★ An evaluation of the ability of static analyses and LLMs to
detect and repair portability issues;

★ An evaluation about the reaction of developers about the pull re-
quests we open to fix portability issues in their GitHub projects;

★ A dataset of portability issues across 2,042 Python projects, in-
cluding test re-execution results, GitHub issues, code examples,
and LLM evaluation data.

Our artifacts, including code and data, are publicly available at
https://github.com/ncsu-swat/portability-issues-py.

2 Projects and Questions
This section describes the projects we used (2.1) the research ques-
tions we posed (2.2).

2.1 Projects
Dataset. We identified candidate repositories through a broad
GitHub API query, then filtered this pool by verifying Python was
the predominant language and that repositories contained exe-
cutable tests with at least one passing test. From this set, we sampled
2,042 projects, a size both substantial and feasible for cross-platform
execution, and randomly partitioned them for our analyses.

Dataset partitioning.We partitioned the dataset to balance hu-
man effort with obtaining a representative sample. We allocated 900
projects to a learning set for identifying and categorizing portability
issues through detailed analysis. This set was divided by detection
method: 500 projects (nearly 25% of the total) through cross-OS test
re-execution, and 400 projects (an amount realistically inspectable
manually) through systematic GitHub issue mining. These sub-
sets are non-overlapping, ensuring independent observations. We
extract our taxonomy from these 900 projects (=500+400). The re-
maining 1,142 projects (=2,042-1,142) constitute an application set
for validation through pull requests.

Table 1: Stats on 2,042 evaluated projects: no. of tests (#Tests),
size (SLOC), no. of commits (#Sha), age in years (Age), no. of
GitHub stars (★).

Statistic #Tests SLOC #Sha Age ★

Mean 572.51 41,635.39 2,883.25 6.24 6,147.88
Median 72 7,478 426.50 5.87 83.50
Min 1 2 2 0.3 2
Max 36,588 3,237,895 194,153 17.27 366,472
Sum 1,169,056 85,019,457 - - -

Table 1 summarizes key characteristics of the 2,042 evaluated
projects. On average, each project comprises approximately 573
tests and 41.6K lines of Python code (SLOC), with a median of 72
tests and 7.5K SLOC, indicating a distribution skewed by a few
very large systems. Regarding repository activity, projects have on
average 2.9K commits, a median of 427, and span a mean lifetime
of 6.2 years. The number of GitHub stars varies widely, with an
average of 6.1K, a median of only 84, and a maximum of ∼366K,
reflecting the presence of both niche and highly popular projects.

Overall, the dataset covers a diverse range of software systems,
from small-scale repositories with only a handful of commits to
large, long-lived, and widely adopted projects.

2.2 Research Questions and Methodology
We aim to answer the following key research questions:
RQ1: How prevalent are portability problems in Python
projects?. This question aims to assess how frequently portability
problems occur in practice. If such issues are very rare, or if devel-
opers generally disregard them, the study’s practical value would
be limited. To address this question, we analyze issue reports and
execute tests in the wild across multiple virtual machines.
RQ2: What are the causes, symptoms, and fixes of portability
problems?. Assuming that identifying and resolving portability
issues is an important problem, it is also essential to understand how
these issues manifest (i.e., their symptoms), what their root causes
are, and how they are typically repaired. For instance, automated
solutions become more feasible when a small number of recurring
fix patterns can be observed and documented.
RQ3: How good are existing tools at detecting and fixing
portability issues?. This question examines the extent to which
existing tools (e.g., static analyzers and LLMs) can detect and fix
portability problems. Re-executing test suites across different OSes
(e.g., through virtual machines) can reliably identify portability
issues, but it is limited by the ability of the existing tests to exercise
the affected code locations.
RQ4: How Do Developers Respond to Reported Portability
Issues?. This question aims to further understand technical and so-
cial dimensions of portability issues, namely, what are the common
fixes developers employ and how developers react to pull requests
we submit to fix portability issues in their projects.

3 Results
This section provides answers to the posed research questions.

https://github.com/ncsu-swat/portability-issues-py

An Empirical Analysis of Cross-OS Portability
Issues in Python Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 2: Prevalence of portability problems.

(a) Problems detected with test re-execution.

Number of projects selected 500
Number of projects with OS differences 56

Number of tests executed 440,728
Number of test runs with OS differences 9,508

(b) Problems detected in issues with manual inspection.

Number of projects selected 400
Number of projects with OS differences 95

Number of issues mined 2,617
Number of issues analyzed 240
Number of issues documenting OS differences 102

3.1 Answering RQ1: How prevalent are
portability problems in Python projects?

3.1.1 Methods. We use two complementary methods to identify
portability issues. The first method, cross-OS test re-execution, sys-
tematically reveals behavioral differences across platforms but it is
inherently incomplete as tests may not cover important code paths.
The second method, issue mining, complements test re-execution
by including developer perspectives and discussions, though it is
costly as it requires manual analysis of discussion threads to rule
out spurious cases. We discuss both methods in detail below.

Cross-OS test re-execution. For each project we run the test
suite on multiple operating systems and record divergent outcomes.
We then triage failures via logs and small code inspections, map-
ping each instance to a concrete category (i.e., a classification of
the root cause of the portability issue, such as file handling, missing
APIs, or library dependencies; the full taxonomy is presented in
answering RQ2: What are the causes, symptoms, and fixes of porta-
bility problems?). We execute tests on ephemeral virtual machines
provided by GitHub-hosted runners [16]. Each virtual machine is
automatically provisioned with 4 CPUs and 16 GB of RAM. We
implemented a single GitHub Actions workflow (YAML) that uses
a matrix strategy to run the test-suite on Ubuntu 24.04 LTS, ma-
cOS 15, and Windows Server 2025 (each job runs in a fresh VM
image). Each job installs dependencies, runs the Python tests with
pytest [41] and the pytest-json-report plugin [28] to create
JSON reports, and finally uploads the JSON files as workflow arti-
facts for later analysis. This approach ensures reproducible, parallel
cross-platform testing while GitHub manages VM provisioning and
maintenance.

Issues Mining. To complement test-based findings, we selected
400 projects from the learning set and mined GitHub issues and
pull requests from them. We wrote a “candidate finder” combin-
ing multiple types of keyword: (a) OS/platform indicators (e.g.,
Windows, Linux, macOS, specific distros/architectures), (b) failure/-
fix language (e.g., fails, error, bug, fix, workaround), (c) testing/CI
context (pytest, CI, GitHub Actions), and (d) common portability
causes (e.g., path separators, chmod/permissions, encodings/UTF-
8, dynamic libraries like .dll/.so). We combine these keywords
with “OR” within each type and “AND” across types. We searched

titles, bodies, and comments, with extra weight to title and close-
proximity matches. We employ a lightweight triage (brief sum-
maries and negative filters for off-topic mentions) to filter spurious
results. Candidate issues were normalized into consistent records
(project, link, date, summary, compact tags like OS=, FIX=, TEST=,
CAUSE=), duplicates removed, and full text (title, description, com-
ments) archived for analysis.

3.1.2 Results. We applied both methods described in Section 3.1.1
to the learning set. Table 2 reports on the prevalence of portability
problems in GitHub Python projects. Table 2a details results from
test re-execution, while Table 2b details results from issue mining.

Table 2a shows that of the 500 projects analyzed, we found dis-
crepant behavior in 56 (11.2%) of them, i.e., projects where test suites
had at least one test manifesting OS differences. These projects in-
cluded a total of 440,728 test cases, of which 9,508 showed discrepant
outcomes, corresponding to 2.16%.

Table 2b shows the results from issue mining. From the 400
projects selected (see Section 3.1.1), we mined a total of 2,617 can-
didate issues. From this set, we randomly sampled 240 of the most
recent issues for manual inspection. Through careful manual analy-
sis, we confirmed that 102 of these were genuine portability issues,
spanning 95 distinct projects. Combined with the test re-execution
results, we identified 151 Python projects with portability issues
considering both methods.

RQ1 (prevalence): We find that portability issues are relatively
prevalent. For example, 11.2% of the 500 projects we analyzed
with cross-OS test re-execution have portability problems. Addi-
tionally, our issue mining approach shows that 95 of the projects
we analyzed have genuine portability issues.

3.2 Answering RQ2: What are the causes,
symptoms, and fixes of portability
problems?

3.2.1 Method. We conducted a qualitative study to categorize the
root causes, symptoms, and the fixes of portability problems.

We used cross-OS test re-execution and the analysis of issues
to find root causes and symptoms. For fixes, we needed to rely
on the discussion in the issue and the corresponding fix commits.
In cross-OS test re-execution, we analyzed error messages, stack
traces, and the failing test code to understand the root causes and
symptoms. For issue mining, we analyzed issue titles, descriptions,
developer discussions, and comments to understand the root causes
and symptoms. Through iterative open coding [37] across both data
sources, we identified recurring patterns and grouped instances
with similar underlying causes. The coding process was conducted
independently by two co-authors, with regular discussion to resolve
ambiguities and refine category definitions. To ensure reliability, we
computed inter-coder agreement on a subset of the data, achieving
96.4% agreement with a Cohen’s kappa of 0.89, reflecting almost
perfect inter-coder reliability. During the later phases of the coding
process, new issues no longer produced new categories, indicating
that the taxonomy had reached theoretical saturation.

The resulting taxonomy of root causes consists of 7 high-level
categories (e.g., FILE, PROC, LIB) with 24 distinct sub-categories.

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.

For each instance, we documented observable symptoms (error mes-
sages, behaviors) and examined corresponding fixes in merged pull
requests or commits to identify common repair patterns. We identi-
fied 15 unique symptom signatures and 9 context-dependent symp-
toms across the 24 sub-categories, and 4 general fix patterns that
collectively address all observed portability problems. Table 3 sum-
marizes the primary data sources used to identify each component
of our taxonomy. Root-cause categories were derived from patterns
observed across both test failures and issue discussions. Symptom
signatures were primarily extracted from test re-execution, where
concrete error messages and stack traces provide direct evidence
of portability problems. Fix patterns were identified by examining
code changes and discussions in both test-related commits and
issue-related pull requests.

Table 3: Data sources for portability taxonomy components.

Component Test Re-execution Issue Mining

Root-cause categories ✓ ✓

Symptoms ✓ ✗

Fix patterns ✓ ✓

In the following subsections, we elaborate on the characteristics
of portability problems: root-causes, symptoms, and fixes.

3.2.2 Answering RQ2.1: What are the root causes of porta-
bility problems in Python?
Table 4 presents our taxonomy of portability issues organized by
root-causes. Each row groups related sub-categories under a main
category. The columns show: (i) the root-cause category name and
acronym, (ii) specific sub-categories within that category, (iii) a
brief description of each sub-category, (iv) the number of distinct
projects where the issue appeared in test execution, (v) the number
of distinct projects where the issue appeared in mined GitHub
issues, and (vi) the total count across both sources.

We identify seven main root-cause categories that explain why
portability problems occur:
1. File and Directories (FILE): The most prevalent category

(62 projects) stems from OS differences in file operations. Key
issues include path separator differences (backslash vs. for-
ward slash), line ending mismatches (CRLF vs. LF), file locking
semantics, and text encoding defaults.

2. Process and Signals (PROC): This category (25 projects) cap-
tures failures due to OS process management differences. For
example, shell execution varies across platforms (cmd.exe vs.
bash), Windows lacks many Unix signals (SIGHUP, SIGKILL), and
port binding produces different error codes.

3. Library Dependencies (LIB): These failures (24 projects) oc-
cur when code assumes platform-specific libraries. Issues in-
clude Unix-only modules (e.g., fcntl), missing dependencies,
different dynamic library extensions (.dll vs .so vs .dylib), and
architecture-specific binary wheels.

4. API Availability (API): This category (17 projects) covers
Python APIs not universally available. Many OS module meth-
ods are Unix-specific (os.uname() , os.geteuid() , os.getpgid())

and fail on Windows, while optional modules like readline and
resource may be missing.

5. Environment and Display (ENV): These problems (14
projects) arise from runtime environment differences. For exam-
ple, headless CI lacks display servers for GUI testing, window
managers behave differently, terminal capabilities vary, and
the curses module is unavailable on Windows (not included in
standard Python distributions).

6. Permissions and Limits (PERM): These issues (7 projects)
reflect OS differences in access control. For example, permis-
sion models differ (Unix chmod versus Windows ACLs), file
descriptor limits vary, and symbolic link creation requires ad-
min privileges on Windows.

7. System Information (SYS):This category (2 projects) includes
failures from platform-specific system information mecha-
nisms. For example, the /proc filesystem exists only on Linux,
and timezone databases may not be installed by default.

RQ2.1 (root causes): We identified 7 root-cause categories with
24 sub-categories. File and Directories (FILE) is most prevalent
(62 projects), followed by Process and Signals (25 projects) and
Library Dependencies (24 projects).

3.2.3 Answering RQ2.2: What are the observable symptoms
of portability issues? Understanding how portability issues man-
ifest during execution is essential for rapid diagnosis and triaging.
In this section, we examine the observable symptoms of portability
problems—the concrete error messages, exceptions, and behavioral
differences that appear in test logs, and CI output. Table 5 maps the
root causes (of portability issues) to the corresponding symptom
signature and fix pattern.

Symptom categories. We categorize symptoms into two types
based on their diagnostic value (color-coded in Table 5): (i) Unique
signatures are error messages that unambiguously identify a spe-
cific portability sub-category, enabling immediate diagnosis from
logs alone; and (ii) Context-dependent symptoms are mani-
festations that require additional code inspection or contextual
understanding to distinguish from other failure modes.
Unique signatures. The majority of sub-categories (15 out of
24, 62.5%) produce unique, actionable error signatures. These
include missing API methods (e.g., AttributeError: module
‘os’ has no attribute ‘geteuid’), unavailable modules
(e.g., ModuleNotFoundError: No module named ‘fcntl’), en-
coding errors (UnicodeDecodeError: ‘charmap’ codec...),
specialized exceptions like TclError for display issues or
ZoneInfoNotFoundError for timezone problems, and platform-
specific errors like OSError: [Errno 24] Too many open files
for file descriptor limits. These signatures facilitate more direct di-
agnosis from logs, reducing the need for extensive code inspection
required by context-dependent symptoms.
Context-dependent symptoms. The remaining 9 sub-categories
(37.5%) do not produce unique error signatures, requiring devel-
opers to inspect the code context to diagnose the portability issue.
These include cases where the same error can arise from multiple
root causes, where failures are silent or produce generic errors,
or where the symptom manifests as behavioral differences rather

An Empirical Analysis of Cross-OS Portability
Issues in Python Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil
Table 4: Taxonomy of portability issues showing root-cause categories, sub-categories, brief descriptions, and number of distinct
projects observed in test execution and mined GitHub issues.

Root-cause category (Acronym) Sub-categories Description # of projects in
tests

of projects in
issues Total

File and Directories (FILE) Path separators Forward vs. backslash differences 7 27

62

Line endings CRLF vs. LF mismatch 1 5
Case sensitivity Filename case handling varies 1 0
File locking Windows locks open files 7 4
Encoding UTF-8 not default everywhere 2 7
Filesystem block size Block size assumptions differ 0 1

Process and Signals (PROC) Shell command execution Shell behavior differs across OS 5 14
25Missing signals Signals unavailable on Windows 3 2

Address already in use Port binding conflicts vary 1 0

Library Dependencies (LIB) Platform-specific libraries (e.g., fcntl) Unix-only libraries missing elsewhere 2 1

24Missing libraries Dependencies not universally available 2 11
Dynamic library loading DLL vs. SO file issues 0 5
Binary wheel mismatch Architecture-specific wheel incompatibilities 0 3

API Availability (API) Methods: os.uname(), os.geteuid(), os.getuid(), os.getpgid() OS methods missing on Windows 13 2 17
Modules: readline, resource Optional modules not everywhere 0 2

Environment and Display (ENV) No display in GitHub CI (linux) Headless CI lacks display server 3 2

14GUI differences Window manager behavior varies 0 4
Missing curses Curses unavailable on Windows 1 0
Terminal capabilities Terminal features differ across systems 2 2

Permissions and Limits (PERM) Permission Permission models differ by OS 3 1
7File descriptor limits Resource limits vary across systems 0 1

Symlink privileges Windows requires admin for symlinks 1 1

System Information (SYS) /proc filesystem /proc missing on macOS/Windows 1 0 2
Timezone database Timezone data not always installed 1 0

Total - - 56 95 151

than exceptions. For example, path separator issues often manifest
as generic FileNotFoundError or silent failures where hardcoded
paths like "/tmp/file.txt" work on Unix but fail on Windows.
Similarly, case sensitivity issues may produce FileNotFoundError
indistinguishable from actual missing files unless one examines
the filesystem. The /proc filesystem is another case where generic
FileNotFoundError occurs on macOS/Windows, requiring code
inspection to determine if the issue stems from missing /proc paths
rather than other file access problems. Shell command execution
issues rarely throw exceptions but instead manifest as incorrect
exit codes or output differences when commands are interpreted by
different shells (cmd.exe vs. bash). GUI differences show as visual
rendering variations or behavioral inconsistencies rather than ex-
plicit errors, and terminal capability mismatches may cause ANSI
color codes to appear as literal text. Permission issues vary depend-
ing on the specific operation (chmod, file access, etc.), filesystem
block size problems appear as test assertions on exact byte counts
that differ across platforms, and binary wheel mismatches often suc-
ceed during installation but fail at runtime with ABI compatibility
errors that vary by architecture.
Implications for diagnosis. Our findings reveal that while unique
signatures enable rapid automated triage for 62.5% of portability
issues, the remaining 37.5% require more sophisticated analysis.
This suggests that detection tools must go beyond simple log pars-
ing and incorporate contextual hints (e.g., hardcoded paths, shell
command patterns, or platform-specific API usage). The presence
of context-dependent symptoms also highlights the importance of

comprehensive cross-platform testing, as these issues cannot be
reliably predicted through static analysis alone.

RQ2.2 (symptoms): Of 24 sub-categories, 15 (62.5%) produce
unique error signatures enabling immediate diagnosis, while 9
(37.5%) exhibit context-dependent symptoms requiring code in-
spection to distinguish from other failure modes.

3.2.4 Answering RQ2.3:What are fix patterns for addressing
portability issues?
Fix patterns. By examining source code, test logs, issue discus-
sions, and merged pull requests from both detection approaches, we
identified four general fix patterns that address portability problems
across all 24 sub-categories (mapped in Table 5). Figure 1 illustrates
these patterns with concrete examples:

1. Environment handling adapts code and tests to runtime
conditions by detecting platform capabilities and adjusting
behavior. Listing 2 shows this pattern using pytest’s skipif
decorator to conditionally skip tests on macOS. This allows
test suites to adapt to platform-specific capabilities without
maintaining separate test files for each operating system. This
is the most prevalent pattern, accounting for 35.7% of all pattern
applications.

2. Defensive checks add guards, fallbacks, or conditional im-
ports to handle missing APIs or modules gracefully. Listing 1
demonstrates this pattern by wrapping the readline import
(unavailable on Windows) in a try/except block with a fall-
back value, allowing the code to continue execution rather than

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.
Table 5: Symptom signatures and general fix patterns for portability sub-categories. Symptom cells are color-coded:
unique signatures enable immediate diagnosis; context-dependent require code inspection. Fix patterns are color-coded to
show reuse across categories: Environment handling, Defensive checks, Normalization, Portable APIs.

Root-cause
category Sub-categories Symptom (verbatim error / message) General Fix Pattern

FILE Path separators Context-dependent: hardcoded paths fail silently or with generic file errors Normalization — normalize paths with pathlib
Line endings AssertionError: ‘\r\n’ != ‘\n’ Normalization — normalize line endings
Case sensitivity Context-dependent: file exists but name differs only in case Normalization — case-normalize filenames
File locking PermissionError: [WinError 32] The process cannot access the file because it

is being used by another process (Windows)
Environment handling — use context managers, explicit close

Encoding UnicodeDecodeError: ‘charmap’ codec can’t decode byte 0x{XX} in position N Normalization — set explicit UTF-8 encoding
Filesystem block size Context-dependent: tests assert exact byte counts that vary by OS Normalization — normalize computations avoid assumptions

PROC Shell command execution Context-dependent: command syntax or exit codes differ across shells Portable APIs — use subprocess.run shell=False
Missing signals AttributeError: module ‘signal’ has no attribute ‘SIGHUP’ (or SIGKILL, SIGTERM

variants)
Defensive checks — guard signals per platform

Address already in use OSError: [Errno 98] Address already in use (Linux) / [WinError 10048] (Windows) Defensive checks + Environment handling — catch
OS-specific errors, use port 0

LIB Platform-specific libraries ModuleNotFoundError: No module named ‘fcntl’ (Windows) Defensive checks — conditional import provide fallback
Missing libraries ModuleNotFoundError: No module named ‘{library_name}’ Defensive checks — optional import with fallback
Dynamic library loading OSError: [WinError 126] The specified module could not be found (Windows) Defensive checks — guard loading prefer pure-Python
Binary wheel mismatch Context-dependent: installation succeeds but runtime fails with ABI errors Environment handling — install platform-appropriate wheel

API Methods (e.g., os.uname) AttributeError: module ‘os’ has no attribute ‘{method}’ (Windows) Portable APIs + Defensive checks + Environment handling
— use platform.uname, hasattr guards, OS detection

Modules (e.g., readline) ModuleNotFoundError: No module named ‘{module}’ (Windows) Defensive checks — guard import use alternatives

ENV No display in GitHub CI TclError: no display name and no $DISPLAY environment variable (Linux) Environment handling — skip GUI tests in CI
GUI differences Context-dependent: widgets render or behave differently Environment handling — skip or mock GUI features
Missing curses ModuleNotFoundError: No module named ‘_curses’ (Windows) Defensive checks — conditional import with stub fallback
Terminal capabilities Context-dependent: color codes appear as text or formatting ignored Environment handling — detect capabilities degrade gracefully

PERM Permission Context-dependent: depends on operation (chmod, file access, etc.) Defensive checks + Environment handling — check
permissions, skip restricted tests

File descriptor limits OSError: [Errno 24] Too many open files Environment handling — close files promptly, raise limits in CI
Symlink privileges OSError: [WinError 1314] A required privilege is not held by the client

(Windows)
Environment handling — detect support and use copies

SYS /proc filesystem Context-dependent: /proc paths fail on macOS/Windows with generic FileNotFoundError Portable APIs — use psutil or platform APIs
Timezone database zoneinfo.ZoneInfoNotFoundError: ‘No time zone found with key {...}’ Normalization — install tzdata or fallback

1 - import readline
2 + try:
3 + import readline
4 + except ImportError:
5 + readline = None # fallback if readline is unavailable

Listing (1) Defensive check for optional library

1 + import platform
2 + @pytest.mark.skipif(platform.system () == "Darwin", reason="Not

supported on macOS")
3 def test_special_case ():
4 ...

Listing (2) Environment handling: Using pytest skip

1 - file_path = "data/file.txt"
2 + import os
3 + file_path = "data" + os.path.sep + "file.txt" # consistent path

Listing (3) Normalization: Normalizing file paths

1 - hostname = os.uname()[1] # unix -only function
2 + import platform
3 + hostname = platform.uname().node # cross -platform

Listing (4) Portable APIs: Using platform module for OS detection

Figure 1: Representative examples of fixes for portability
issues: (a) Defensive checks, (b) Environment handling, (c)
Normalization, and (d) Portable APIs.

35.7%

32.2%

21.4%
10.7%

Environment handling (10)
Defensive checks (9)
Normalization (6)
Portable APIs (3)

Figure 2: Distribution of fix patterns across 24 portability
sub-categories.

crash. This pattern applies when functionality may be unavail-
able on certain platforms and accounts for 32.2% of pattern
applications.

3. Normalization standardizes encodings, line endings, paths,
or filenames to prevent spurious differences across platforms.
Listing 3 illustrates this by constructing file paths using
os.path.sep instead of hardcoded separators, ensuring correct
behavior on both Unix (forward slash) and Windows (back-
slash) systems. This pattern accounts for 21.4% of applications.

4. Portable APIs replace OS-specific constructs with cross-
platform abstractions. Listing 4 demonstrates replacing
the Unix-only os.uname() function with the portable
platform.uname() function, ensuring the code works cor-
rectly on both Unix-like systems andWindows. While used less

An Empirical Analysis of Cross-OS Portability
Issues in Python Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 6: LLMs for detection: metrics.

(a) Confusion matrices w/ 90 samples: 60 portable and 30 non-portable.

Predicted
llama-3.3 grok-4-fast gpt-4o-mini

Actual Port NonPort Port NonPort Port NonPort

Port 10 50 53 7 21 39
NonPort 4 26 12 18 1 29

(b) Performance metrics.

Model Precision Recall F1-Score Accuracy

llama-3.3 0.34 0.87 0.49 0.40
grok-4-fast 0.72 0.60 0.65 0.79
gpt-4o-mini 0.43 0.97 0.59 0.56

frequently (10.7%), this pattern targets specific, well-defined
problems where standard cross-platform abstractions exist.

Pattern distribution. Figure 2 shows how these patterns distrib-
ute across all pattern applications. Some sub-categories require
multiple patterns, resulting in 28 total pattern applications across
24 sub-categories. Environment handling is the most prevalent
strategy, accounting for 10 applications (35.7%), followed by De-
fensive checks with 9 applications (32.2%), together representing
approximately two-thirds of all pattern applications. Normalization
accounts for 6 applications (21.4%), primarily addressing file and
path-related issues. Portable APIs, while used least frequently (3
applications, 10.7%), targets specific, well-defined problems where
standard cross-platform abstractions exist. This distribution reflects
the nature of portability issues: most problems arise from platform-
environmental differences (explaining fixes with conditional han-
dling) rather than fundamental API incompatibilities. The data also
show that portability fixes are typically short and localized rather
than extensive or widespread. Consequently, they tend to impose a
low workload on developers for both implementation and review.

RQ2.3 (fixes):We identified 4 general fix patterns that collectively
address all 24 portability sub-categories. Some sub-categories re-
quire multiple patterns, resulting in 28 total pattern applications.
Environment handling is most prevalent (35.7%), followed by De-
fensive checks (32.2%), Normalization (21.4%), and Portable APIs
(10.7%). These patterns represent recurring, localized code modifi-
cations that provide systematic guidance for resolving portability
issues across diverse contexts.

3.3 Answering RQ3: How good are existing tools
at detecting and fixing portability issues?

This section evaluates performance of tools for detecting (§ 3.3.1)
and for fixing (§ 3.3.2) portability issues.

3.3.1 LLMs for detection. Alternative static analysis tools. We
examine the capabilities of various popular linters for Python,
namely Ruff [39], Flake8 [6], Pylint [23], MyPy [22], Bandit [31],
and Pyright [7]. We find that only Ruff provides a rule that
directly addresses potential portability concerns, namely the
unspecified-encoding check [42] that maps to the “Encoding”

Table 7: Prompts used for LLM evaluation.

(a) Generic prompt used for portability detection and fixing.

Generic Prompt

You are a Python expert. Check the following code and answer:
1. Is there any operation in the code that could fail on a specific
operating system (Linux, Mac, Windows)?
2. If yes, explain why and on which OS it might fail. If it is fully
portable, finish saying “Portable”.

(b) Pattern-guided prompt template to fix portability issues.

Pattern-Guided Prompt Template

You are a Python expert. The following code has a portability
problem: <symptom-description>. Fix the code, considering the
following fix options <list-of-possible-fixes-for-the-symptom>.

sub-category within the “File and Directories” category. The re-
maining tools focus primarily on style, type correctness, security,
and general code quality. For that reason, we explored the use
of Large Language Models (LLMs) to detect portability problems
and repair them. We consider three LLMs of moderate model size,
namely llama-3.3 [25], Grok-4-Fast [45], and GPT-4o-Mini [29]
Setup.We sampled a total of 90 code snippets to evaluate perfor-
mance of LLM: (i) 30 non-portable snippets containing OS-specific
constructs, (ii) 30 portable snippets that had been fixed by develop-
ers (mined from issues), and (iii) 30 code we manually categorized
as portable. This distribution attempts to reflect a more realistic
division of code seen in the wild, where portability violations are
less frequent. We used the openrouter.ai API [40] to interact with
the models. Each model was prompted with a consistent template
that included the code snippet and a question asking whether the
code was portable across Windows, Linux, and Mac (see Table 7).
We parse the answers to extract classification decisions.
Metrics. We used standard metrics to measure the performance of
binary classifiers (e.g., precision, recall, accuracy, etc.) [33]. Table 6
shows results. Table 6a shows the confusion matrices associated
with each LLM, illustrating the classification of the 90 samples.
Table 6b shows the metrics for each model.
Analysis of results. The results we obtain indicate limited ability
of LLMs to accurately reason about portability issues. llama-3.3 and
GPT-4o-Mini are “pessimistic” and report too many alarms, most of
which are false positives. In contrast, Grok-4-Fast is more cautious
in reporting but misses lots of true positives.

3.3.2 LLMs for fixing. Setup. Following the classification exper-
iment, we designed a complementary evaluation focused on the
corrective capabilities of LLMs. In this phase, we used the 30 non-
portable Python snippets identified earlier and prompted each
model with two distinct repair configurations. In the first configu-
ration (generic prompt), each model received a general instruction
stating that the code exhibited portability issues and was asked
to produce a corrected version (see Table 7). In the second con-
figuration (pattern-guided prompt), each non-portable snippet was
accompanied by the specific symptom (derived from our Unique

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.

Table 8: Performance of LLMs in generating portability fixes
across both prompt configurations (30 samples per model).

(a) Generic prompt.

Model Correct Incorrect Accuracy

grok-4-fast 13 17 0.43
gpt-4o-mini 10 20 0.33
llama-3.3 8 22 0.27

(b) Pattern-guided prompt.

Model Correct Incorrect Accuracy

grok-4-fast 23 7 0.77
gpt-4o-mini 21 9 0.70
llama-3.3 15 15 0.50

signature symptoms in 3.2.3) and the corresponding General Fix
Pattern from Table 5.

The rationale for this approach is: (1) observe symptoms in
the code, (2) look up the mapping in Table 5 (Symptom → Gen-
eral Fix Pattern), and (3) prompt the LLM with specific fix pat-
tern guidance. For example, when encountering code that pro-
duces AttributeError: module ‘signal’ has no attribute
‘SIGHUP’, we would provide that symptom together with corre-
sponding fix(es) (Table 5). Table 7 shows the template structure used
for these pattern-guided prompts. This design evaluates whether
structured repair guidance improves the model’s ability to gen-
erate functionally portable code. Each model attempted to fix all
30 snippets, resulting in 90 repair attempts per configuration. We
also examine repair performance separately for cases with explicit
symptom descriptions versus cases with empty symptom fields to
understand how input characteristics influence model effectiveness.
Metrics.We evaluate the correctness of a generated fix with two
criteria: (i) the modified code must execute successfully without
errors across all target platforms (Linux, macOS, Windows), and
(ii) the fix must preserve the intended functionality of the origi-
nal program. Fixes that met both criteria were considered correct;
otherwise, they were labeled as incorrect. Accuracy is the ratio of
correct fixes to the total number of repair attempts.
Analysis of results. The results in Table 8 show that all models
exhibited limited success under the generic prompt setting, with
accuracies ranging from 27% to 43%. This indicates that, when
providedwith onlyminimal context, most LLMs struggle to infer the
exact nature of portability issues and to produce appropriate cross-
platform corrections. While the grok-4-fast model outperformed
the others, its success rate remained below 50%, suggesting that
general-purpose reasoning alone is insufficient for precise code
repair in this domain.

In contrast, the pattern-guided configuration substantially im-
proved repair performance across all models. The inclusion of ex-
plicit problem descriptions and generalized fix patterns increased
accuracy by more than 30 percentage points on average. The
grok-4-fastmodel achieved the highest accuracy (76.67%), demon-
strating a clear ability to integrate structured repair hints into its
reasoning process. Similarly, gpt-4o-mini reached 70%, produc-
ing fixes that were more consistent with the intended patterns

Table 9: Pattern-guided repair performance breakdown: cases
with symptom descriptions vs. empty symptom fields.

(a) With symptom descriptions (𝑛 = 23).

Model Correct Incorrect Accuracy

grok-4-fast 19 4 0.83
gpt-4o-mini 16 7 0.70
llama-3.3 12 11 0.52

(b) Without symptom descriptions (𝑛 = 7).

Model Correct Incorrect Accuracy

grok-4-fast 4 3 0.57
gpt-4o-mini 5 2 0.71
llama-3.3 3 4 0.43

while preserving functional correctness. The llama-3.3 model
also showed moderate improvement (50%), particularly in cases
involving straightforward path and API adjustments, though it still
struggled with more complex logic integration.

Table 9 reports on an experiment where we analyzed repair per-
formance separately for cases with explicit symptom descriptions
versus cases lacking such descriptions due to context-dependent
symptoms. Results indicate that the availability of symptom de-
scriptions significantly influences LLM performance. Among the 23
cases with explicit symptom descriptions, grok-4-fast achieves
notably higher accuracy (0.83), while gpt-4o-mini and llama-3.3
maintain similar or slightly improved performance (0.70 and 0.52, re-
spectively). In contrast, for the 7 cases where symptom descriptions
were not available due to context-dependent or unstable symp-
toms, the prompt contained only the code snippet and general
instructions to apply the relevant fix pattern. In these cases, per-
formance generally declines: grok-4-fast drops to 0.57, while
gpt-4o-mini remains robust at 0.71 and llama-3.3 falls to 0.43.
This pattern demonstrates that explicit symptom descriptions pro-
vide valuable context that particularly benefits more sophisticated
models, whereas some cases can still be addressed even without
rich contextual information.

Overall, these findings highlight the strong impact of guided
contextualization on LLM-based repair.When supplied with explicit
repair patterns, the models produced significantly more reliable and
semantically consistent fixes, confirming that structured guidance
can substantially enhance cross-platform reasoning capabilities in
code generation tasks.

RQ3 (tool effectiveness): Static analysis tools show poor ability
to detect portability problems. LLMs achieve moderate detection
accuracy (40–79% across three models), with substantial variation
in precision and recall. For repair tasks, LLMs show limited success
with generic prompts (27–43% accuracy) but improve significantly
with pattern-guided prompts (50–77% accuracy), yielding an av-
erage improvement of 30 percentage points. These results show
that structured guidance using error signatures and fix patterns
(Table 5) substantially enhances LLM-based repair.

An Empirical Analysis of Cross-OS Portability
Issues in Python Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

3.4 Answering RQ4: How Do Developers
Respond to Reported Portability Issues?

This section discusses the pull requests (PRs) we submitted.

3.4.1 Method. We use the cross-OS test re-execution method
(§ 3.1.1) to detect portability problems in our application set (§ 2.1).
For each identified issue, we manually apply one of the four fix
patterns from our taxonomy (Table 5). We then validate each fix
by re-running the affected tests on all three operating systems
(Linux, macOS, Windows) to confirm consistent behavior across
platforms. Once the fix is validated, we submit a pull request to
the project, providing a clear description of the portability issue,
the root cause, and an explanation of how the proposed change
resolves the problem.

3.4.2 Results. We detected 47 portability issues; 33 PRs were sub-
mitted (70%), with 14 not submitted due to project policies. All of the
PRs match one of the four fix patterns we discussed in Section 3.2.4.
Table 10 describes the PRs. Of the 33 pull requests submitted, 17
were accepted at the time of writing. The overall acceptance rate of
51.5%, along with a zero rejection rate, indicates that the issues we
identified correspond to genuine portability problems recognized
by maintainers. Notably, “File and Directories” issues were the most
frequent (15 PRs), reflecting the prevalence of path, encoding, and
file handling inconsistencies across platforms. “Process and Signals”
issues exhibited the highest acceptance rate (100%), likely due to
their critical impact on application functionality. Considering the
location of the fix, we observe that in 17 cases only the test code
changes, in 10 cases only the program code changes, and in 6 cases
both the test and program code changes. Note that many cases re-
quire changes to the application logic to ensure consistent behavior
across platforms.

Next, we highlight three representative pull requests that il-
lustrate how portability issues manifest in practice and how our
identified fix patterns address them. These examples span multiple
categories and demonstrate different sub-categories and fix patterns
from our taxonomy.

Table 10: Summary of Pull Requests (PRs) by issue type, show-
ing opened, accepted, and rejected. The last row shows totals.

Category Opened Accepted Rejected

File and Directories 15 9 0
API Availability 12 4 0
Process and Signals 2 2 0
System Information 2 1 0
Library Dependencies 1 1 0
Environment and Display 1 0 0

Total 33 17 0

3.4.3 The webassets Pull Request. We illustrate how portability
issues manifest and are fixed using the webassets project [9], a
Python library for managing and bundling web assets such as CSS
and JavaScript, with 932 stars. The problem we encountered falls
into the File and Directories (FILE) category, specifically the
“File locking” sub-category. The issue occurred in the test suite

where tempfile.NamedTemporaryFile was used without disabling
automatic deletion, causing failures on Windows due to platform-
specific file locking behavior [14]. On Windows, the operating
system locks open files more aggressively than on Unix-like sys-
tems, preventing the same file from being reopened while still in
use. Listing 5 shows the diff of our fix applied to the test file. The
original code created a temporary file within a context manager
that automatically deleted the file upon exiting the with block.
However, on Windows, attempting to reopen this file (which the
test needed to do because it’s a fixture) failed because the file was
still locked by the previous file handle.

1 @pytest.fixture
2 def tmp_file ():
3 - with tempfile.NamedTemporaryFile(mode="wt") as f:
4 + with tempfile.NamedTemporaryFile(mode="wt", delete=False) as f:
5 for _ in range (100):
6 f.write("\n")
7 f.flush()
8 - yield f.name
9 + tmp_path = f.name # store path before file is closed
10 + yield tmp_path
11 + os.remove(tmp_path) # clean up after the test

Listing 5: Approved PR for temporary file handling issue.

Our fix addresses this issue by modifying line 4 to disable auto-
matic deletion using delete = False, storing the file path on line 9
before the file handle is closed, and manually cleaning up the tempo-
rary file on line 11 after the test completes. This pattern exemplifies
the Environment handling fix strategy, where platform-specific
behavior is handled through careful resource management. This
case demonstrates how seemingly simple operations like temporary
file creation can have subtle portability implications that only mani-
fest under specific platform conditions, highlighting the importance
of cross-platform testing for robust software development.

3.4.4 The hosteurope-letsencrypt Pull Request. We demonstrate
another portability fix through the hosteurope-letsencrypt
project [34], which has 67 stars and involves system administration
functionality. The problem falls into the API Availability (API)
category. The issue is due to the use of os.geteuid() to check for root
privileges, but this function is unavailable on Windows, causing
AttributeError: module ‘os’ has no attribute ‘geteuid’.

1 +import platform
2 +def is_admin ():
3 + try:
4 + if platform.system () == "Windows":
5 + import ctypes
6 + return ctypes.windll.shell32.IsUserAnAdmin () != 0
7 + else:
8 + return os.geteuid () == 0
9 + except:
10 + return False
11
12 -is_root = os.geteuid () == 0
13 +is_root = is_admin ()

Listing 6: Cross-platform admin privilege detection fix.

Our fix creates a cross-platform is_admin() function
that replaces the Unix-only os.geteuid() call. The fix uses
Portable APIs (line 4: platform.system() for OS detection),
Environment handling (lines 6, 8: conditional logic that
calls ctypes.windll.shell32.IsUserAnAdmin() for Windows or
os.geteuid() for Unix), and Defensive checks (lines 3–9:
try-except wrapper with safe fallback).

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.

3.4.5 The pydantic-extra-types Pull Request. We show an example
from the pydantic-extra-types project [4], a library that provides
additional type validators for Pydantic with 290 stars, used for
extending Pydantic’s [5] validation capabilities with specialized
data types. The problem we encountered also falls into the File and
Directories (FILE) category, specifically the “Path separators” sub-
category. The issue occurred in test fixtures where os.path.relpath

was used to create relative paths from absolute paths. On Windows,
this function fails when the source and target paths are on different
drives (e.g., C:\ vs D:\), as Windows cannot create relative paths
between different drive letters [12]. Listing 7 shows our fix applied
to test fixtures. The original code assumed that os.path.relpath
would always succeed, but on Windows this assumption may not
hold. For example, when tests are executed from a project directory
located on drive D: while the system temporary directory (used
to create fixture files) resides on drive C:, the function call fails
because it attempts to compute a relative path across drives. Since
the location of temporary directories on Windows is determined by
environment variables and may differ from the working drive [13],
this behavior can lead to path resolution errors.

1 @pytest.fixture
2 def relative_file_path(absolute_file_path: Path) -> Path:
3 + cwd = Path.cwd()
4 + if os.name == 'nt' and absolute_file_path.anchor != cwd.anchor:
5 + return absolute_file_path
6 return Path(os.path.relpath(absolute_file_path , os.getcwd ()))

Listing 7: Patch for cross-drive relative path issue.

Our fix addresses this Windows-specific limitation by detecting
when the OS is Windows (line 4) and checking whether the ab-
solute path and current working directory have different anchors
(drive letters). When this condition is met, the function returns the
absolute path instead of attempting the problematic relative path
conversion (line 5). This pattern exemplifies the Environment
handling fix strategy from our taxonomy, where platform-specific
limitations are accommodated through conditional logic.

This case demonstrates how path operations that work seam-
lessly on Unix-like systems can encounter fundamental limitations
on Windows due to the multi-drive architecture, highlighting the
importance of considering platform-specific filesystem constraints
in cross-platform development.

RQ4 (community validation):We submitted 33 pull requests
(PRs) to open-source projects, achieving a 51.5% acceptance rate
with no rejections. Issues related to files and directories were the
most common (15 PRs), whereas process and signal issues had the
highest acceptance rate (100%). These results confirm our initial
observation that fixes generally involve localized changes—either
to test code (51.5%) or application logic (30.3%)—and suggest a
positive response from developers to the submitted PRs.

4 Lessons Learned
This section distills key insights from our study into actionable
guidance for developers working on cross-platform Python projects.
1. Porting code remains important despite the rise of con-

tainerization technology.We find that a relatively small frac-
tion of open-source projects (19.9%) from our dataset include
Docker configurations. The majority of projects need to handle

portability natively in code. Recommendations. (1) Maintain
cross-OS CI test matrices [17] to catch issues early, regardless
of deployment target; (2) Fine tune code agents [26] to detect
(and fix) portability issues as code is written.

2. Guided LLM repair using error signatures and fix pat-
terns. LLMs underperformwith generic “fix this code” prompts
(27–43% success) but achieve 50–77% success when guided with
specific error messages and corresponding fix patterns from Ta-
ble 5. Recommendations. Include the specific error message and
suggest the corresponding fix pattern in your LLM prompt. This
structured approach nearly doubles success rates compared to
generic prompts.

3. Portability fixes are localized, not architectural. Our four
fix patterns (Table 5) address issues through small, targeted
modifications—adding conditional imports, normalizing paths,
or wrapping platform-specific calls—rather than redesigning
system architecture. Recommendations. Treat portability issues
as localized problems. Consult Table 5 to identify the issue type
and apply the corresponding fix pattern rather than deferring
fixes as “too invasive”.

4. File and path issues dominate cross-platform failures.
File and Directories is the most prevalent category, affecting
62 projects (41% of all portability issues). Path separators, en-
coding, and file locking are the most common sub-categories.
Recommendations. Use pathlib.Path for path construction,
explicitly specify encoding when opening text files, and use
context managers (with statements) to avoid Windows file
locking issues.

5 Threats to Validity
Internal validity. Our cross-OS test re-execution relies on GitHub
Actions runners, which may differ from physical machines. In
addition, the manual analysis of GitHub issues involved subjec-
tive interpretation. Mitigation: multiple researchers independently
conducted the manual analysis, and disagreements were resolved
through consensus.
External validity. The 2,042 GitHub projects we analyzed may
not fully represent all software domains or domain-specific appli-
cations. Mitigation: we sampled projects of diverse domains and
sizes. Our taxonomy is derived from fundamental operating-system
differences and thus transcends specific domains. Furthermore, the
high pull-request acceptance rate supports the generalizability of
our findings across multiple developer communities.
Conclusion validity. Sample sizes varied across research questions
(500, 400, and 90 snippets), which may affect the reliability of cross-
question comparisons. Mitigation: we triangulated results using
multiple independent methods, validated the taxonomy with both
detection approaches, and obtained a 51.5% pull-request acceptance
rate with zero rejections.

Finally, our scope is limited to Linux, macOS, and Windows,
which are representative platforms. We did not consider portability
across hardware architectures or Python versions, for instance.

6 Related Work
Our work relates to prior research on software portability and
cross-platform testing, but differs in scope and methodology.

An Empirical Analysis of Cross-OS Portability
Issues in Python Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

6.1 Empirical Studies on Software Portability
Ghandorh et al. [15] performed a systematic literature review of
metrics and methodologies for assessing software portability. Their
work surveys existing approaches for measuring portability but
does not provide empirical data on real-world portability issues or
concrete solutions. In contrast, our study provides the first large-
scale empirical characterization of Python portability problems
through systematic testing and issue analysis, developing both a
comprehensive taxonomy and practical repair patterns. While their
review identifies the fragmented nature of portability research,
our work addresses this gap by establishing a unified framework
specifically for Python cross-platform issues.

Wang et al. [44] present an empirical study of compatibility
issues in deep learning systems, analyzing thousands of posts to
categorize common problems and their causes. While their findings
relate to cross-environment inconsistencies, the scope is broader
than portability and centered on DL ecosystems. Our work instead
focuses directly on Python cross-platform portability, providing a
targeted taxonomy and concrete repair strategies.

6.2 Cross-Platform Testing and Defect Studies
Vahabzadeh et al. [43] conducted an empirical study on test code
defects, finding that approximately 18% of test bugs stem from
environmental factors, particularly Windows vs. Unix platform
differences. While their work acknowledges environment-related
testing issues, it focuses on general test code quality and defect
classification rather than systematically characterizing portability
problems or developing repair strategies. Our work differs in three
key ways: (1) we provide the first comprehensive taxonomy of
Python portability issues with 7 categories and 24 sub-categories,
(2) we develop systematic fix patterns that address these issues, and
(3) we evaluate both detection and repair approaches using modern
tools (LLMs) that were not available during their study.

6.3 Dynamic Analysis for Portability
Rasley et al. [32] proposed CheckAPI, a runtime framework that de-
tects cross-platform API violations by comparing execution traces
with platform-specific specifications. Unlike CheckAPI, which re-
quires predefined API models and targets API-level compatibility,
our work observes behavioral differences directly through cross-
OS re-execution and covers broader portability issues such as file
systems, encodings, dependencies, and environments.

6.4 API Specification Nondeterminism
Shi et al. [35] and Gyori et al. [18] introduced NonDex, a tool that
systematically explores alternative valid behaviors of Java APIs to
uncover bugs caused by deterministic assumptions about inherently
nondeterministic specifications (e.g., iteration order in hash-based
collections). Although NonDex focuses on intra-platform variabil-
ity within the JVM, our study examines deterministic divergences
that emerge across different operating systems. Both approaches
highlight how subtle, often implicit, assumptions about platform be-
havior can compromise software reliability under diverse execution
environments.

6.5 OS Variability and System Reliability
Sun et al. [38] proposed Bear, a framework that quantifies how
nondeterministic OS behaviors (e.g., scheduling and I/O timing)

affect application reliability. They show that even minor OS-level
variations can propagate to failures or performance drops, reveal-
ing hidden fragility in applications that assume predictable OS
behavior. While Bear focuses on statistical modeling of OS non-
determinism, our work addresses deterministic portability issues
stemming from platform-specific APIs, file systems, and libraries,
providing concrete fix patterns through cross-platform testing.

6.6 Static Analysis for Python
Popular tools such as Ruff [39], Flake8 [6], Pylint [23], MyPy [22],
Bandit [31], and Pyright [7] focus on style, typing, and security, of-
fering minimal support for portability detection—only Ruff includes
unspecified-encoding [42]. Specialized analyzers like Pysa [10]
target security (e.g., taint and injection). Our work instead addresses
runtime portability issues caused by OS variability, mostly missed
by existing tools.

6.7 Performance and Portability.
Zioga et al. [46] analyzed performance bugs across architectures.
Our study differs from theirs in two aspects. First, we focus on
portability issues across operaring systems not architectures. Sec-
ond, we focus on functional correctness not performance. Awar et
al. proposes framework to automatically translate Python in C++
code [3]. The work is orthogonal to ours as we do not focus on
efficiency gains.

7 Conclusions and Future Work
This paper provides the first comprehensive characterization of
cross-OS portability issues in Python code. We employ two meth-
ods to find these issues: cross-OS test re-execution and issue mining.
We analyze 900 projects and find that 16.8% exhibit portability prob-
lems. Issues related to File and Directory operations are the most
prevalent. Overall, our taxonomy captures seven categories of root
causes of issues (with 24 sub-categories) and four fix patterns for
those issues. We find that LLMs achieve 40-79% detection accuracy
and 50-77% repair success when guided by structured patterns. Our
validation through 33 pull requests showed an acceptance rate of
51.5%, indicating that developers care about these issues.

Future work can extend this study by developing hybrid detec-
tion tools that integrate cross-OS re-execution, symptom signa-
tures, and lightweight static analyses. Another promising direction
is the fine-tuning of code agents for portability issues using pattern-
guided prompts. Finally, it is important to broaden the evaluation to
cover a wider range of operating system versions, hardware archi-
tectures, Python versions and even other programming languages.

Data Availability
The artifacts are publicly available at the following link:

https://github.com/ncsu-swat/portability-issues-py

Acknowledgments
This work is partially supported by the NSF under Grant Nos. CCF-
2349961 and CCF-2319472. Denini was supported by CNPq Grant
No. 140220/2022-4. We thank Mohammed Yaseen for his assistance
with experimental setup.

https://github.com/ncsu-swat/portability-issues-py

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Silva et al.

References
[1] 2025. PYPL PopularitY of Programming Language index. https://pypl.github.io/.
[2] 2025. Stack Overflow Developer Survey. https://survey.stackoverflow.co/2025/
[3] Kokkos Contributors. 2025. Kokkos C++ Performance Portability Programming

Ecosystem: The Programming Model - Parallel Execution and Memory Abstrac-
tion. https://github.com/kokkos/kokkos

[4] Pydantic Contributors. 2025. Pydantic Extra Types. https://github.com/pydantic/
pydantic-extra-types.

[5] Pydantic Contributors. 2025. Pydantic Validation. https://docs.pydantic.dev/
latest/.

[6] Ian Stapleton Cordasco and contributors. 2025. Flake8: the modular source code
checker for Python. https://flake8.pycqa.org/

[7] Microsoft Corporation. 2025. Pyright: Static type checker for Python. https:
//github.com/microsoft/pyright

[8] Docker Inc. 2013. Docker: Empowering App Development for Developers.
https://www.docker.com/.

[9] Michael Elsdoerfer. 2025. webassets: Asset management for Python web devel-
opment. https://github.com/miracle2k/webassets.

[10] Facebook/Meta Engineering. 2021. Pysa: Security-Focused Static Analysis Tool
for Python. https://developers.facebook.com/blog/post/2021/04/29/eli5-pysa-
security-focused-analysis-tool-python/

[11] Python Software Foundation. 2025. os.geteuid() - Return the current process’s
effective user ID. https://docs.python.org/3/library/os.html#os.geteuid

[12] Python Software Foundation. 2025. os.path.relpath — Return a relative filepath
to path. https://docs.python.org/3/library/os.path.html#os.path.relpath.

[13] Python Software Foundation. 2025. tempfile — Generate temporary files and
directories. https://docs.python.org/3/library/tempfile.html.

[14] Python Software Foundation. 2025. tempfile.NamedTemporaryFile - Create a
named temporary file. https://docs.python.org/3/library/tempfile.html#tempfile.
NamedTemporaryFile

[15] Hamza Ghandorh, Abdulfattah Noorwali, Ali Bou Nassif, Luiz Fernando Capretz,
and Roy Eagleson. 2020. A systematic literature review for software portability
measurement: Preliminary results. In Proceedings of the 2020 9th International
Conference on Software and Computer Applications. 152–157.

[16] GitHub. 2025. About GitHub-hosted runners. https://docs.github.com/en/
actions/using-github-hosted-runners/about-github-hosted-runners

[17] Inc. GitHub. 2025. Running variations of jobs in a workflow. https:
//docs.github.com/actions/writing-workflows/choosing-what-your-workflow-
does/running-variations-of-jobs-in-a-workflow

[18] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 993–997.

[19] Ricardo Job and Andre Hora. 2024. Availability and usage of platform-specific
APIs: a first empirical study. In Proceedings of the 21st International Conference on
Mining Software Repositories. 27–31.

[20] Kiuwan. 2025. A Guide to Code Portability. Kiuwan Blog (2025). https:
//www.kiuwan.com/blog/what-is-code-portability/

[21] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific Containers for Mobility of Compute. In Proceedings of the 37th Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC). ACM. https://doi.org/10.1145/3126908.3126923 Now maintained
as Apptainer: https://apptainer.org/.

[22] Jukka Lehtosalo and contributors. 2025. MyPy: Optional static typing for Python.
http://mypy-lang.org/

[23] Logilab and Pylint contributors. 2025. Pylint: Python code static checker.
https://pylint.pycqa.org/

[24] Qingzhou Luo, Meiyappan Nagappan, Bogdan Vasilescu, and H. Malik. 2014.
An Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE).

[25] Meta. 2025. Llama 3.3 70B Instruct. https://openrouter.ai/meta-llama/llama-3.3-
70b-instruct

[26] Microsoft Corporation. 2025. Microsoft 365 Copilot Tuning overview (pre-
view). https://learn.microsoft.com/en-us/copilot/microsoft-365/copilot-tuning-
overview

[27] Fraser Mince, Dzung Dinh, Jonas Kgomo, Neil Thompson, and Sara Hooker.
2023. The Grand Illusion: The Myth of Software Portability and Implications
for ML Progress. Advances in Neural Information Processing Systems 36 (2023),
21217–21229.

[28] Numirias. 2025. pytest-json-report: A plugin to generate JSON reports for pytest.
https://github.com/numirias/pytest-json-report

[29] OpenAI. 2025. GPT-4o Mini. https://openrouter.ai/openai/gpt-4o-mini
[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[31] PyCQA. 2025. Bandit: A tool to find common security issues in Python code.
https://bandit.readthedocs.io/en/latest/

[32] Jeff Rasley, Eleni Gessiou, Tony Ohmann, Yuriy Brun, Shriram Krishnamurthi,
and Justin Cappos. 2015. Detecting latent cross-platform api violations. In 2015
IEEE 26th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 484–495.

[33] Takaya Saito and Marc Rehmsmeier. 2015. The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PloS one 10, 3 (2015), e0118432.

[34] Stein Sebastian. 2025. Let’s Encrypt Skripte für Hosteurope WebHosting.
https://github.com/steinsag/hosteurope-letsencrypt.

[35] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
assumptions on deterministic implementations of non-deterministic specifica-
tions. In 2016 IEEE international conference on software testing, verification and
validation (ICST). IEEE, 80–90.

[36] GitHub Staff. 2024. Octoverse: AI leads Python to top language as the number of
global developers surges. https://github.blog/news-insights/octoverse/octoverse-
2024/.

[37] Anselm Strauss and Juliet Corbin. 1990. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications, Newbury Park, CA.

[38] Ruimin Sun, Andrew Lee, Aokun Chen, Donald E Porter, Matt Bishop, and Daniela
Oliveira. 2016. Bear: A framework for understanding application sensitivity to os
(mis) behavior. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 388–399.

[39] Astral Team. 2025. Ruff: A fast Python linter, written in Rust. https:
//docs.astral.sh/ruff/

[40] OpenRouter Team. 2025. OpenRouter. https://openrouter.ai
[41] Pytest Development Team. 2025. pytest: Simple powerful testing with Python.

https://docs.pytest.org/en/stable/
[42] Ruff Team. 2025. Rule Ruff: unspecified encoding. https://docs.astral.sh/ruff/

rules/unspecified-encoding
[43] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An empirical study

of bugs in test code. In 2015 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 101–110.

[44] Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui.
2023. Compatibility issues in deep learning systems: Problems and opportunities.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 476–488.

[45] xAI. 2025. Grok 4 Fast. https://openrouter.ai/x-ai/grok-4-fast
[46] Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu,

Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, and Torsten Hoefler.
2021. Productivity, portability, performance: Data-centric Python. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–13.

https://pypl.github.io/
https://survey.stackoverflow.co/2025/
https://github.com/kokkos/kokkos
https://github.com/pydantic/pydantic-extra-types
https://github.com/pydantic/pydantic-extra-types
https://docs.pydantic.dev/latest/
https://docs.pydantic.dev/latest/
https://flake8.pycqa.org/
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://www.docker.com/
https://github.com/miracle2k/webassets
https://developers.facebook.com/blog/post/2021/04/29/eli5-pysa-security-focused-analysis-tool-python/
https://developers.facebook.com/blog/post/2021/04/29/eli5-pysa-security-focused-analysis-tool-python/
https://docs.python.org/3/library/os.html#os.geteuid
https://docs.python.org/3/library/os.path.html#os.path.relpath
https://docs.python.org/3/library/tempfile.html
https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/actions/writing-workflows/choosing-what-your-workflow-does/running-variations-of-jobs-in-a-workflow
https://docs.github.com/actions/writing-workflows/choosing-what-your-workflow-does/running-variations-of-jobs-in-a-workflow
https://docs.github.com/actions/writing-workflows/choosing-what-your-workflow-does/running-variations-of-jobs-in-a-workflow
https://www.kiuwan.com/blog/what-is-code-portability/
https://www.kiuwan.com/blog/what-is-code-portability/
https://doi.org/10.1145/3126908.3126923
https://apptainer.org/
http://mypy-lang.org/
https://pylint.pycqa.org/
https://openrouter.ai/meta-llama/llama-3.3-70b-instruct
https://openrouter.ai/meta-llama/llama-3.3-70b-instruct
https://learn.microsoft.com/en-us/copilot/microsoft-365/copilot-tuning-overview
https://learn.microsoft.com/en-us/copilot/microsoft-365/copilot-tuning-overview
https://github.com/numirias/pytest-json-report
https://openrouter.ai/openai/gpt-4o-mini
https://bandit.readthedocs.io/en/latest/
https://github.com/steinsag/hosteurope-letsencrypt
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://docs.astral.sh/ruff/
https://docs.astral.sh/ruff/
https://openrouter.ai
https://docs.pytest.org/en/stable/
https://docs.astral.sh/ruff/rules/unspecified-encoding
https://docs.astral.sh/ruff/rules/unspecified-encoding
https://openrouter.ai/x-ai/grok-4-fast

	Abstract
	1 Introduction
	2 Projects and Questions
	2.1 Projects
	2.2 Research Questions and Methodology

	3 Results
	3.1 Answering RQ1: How prevalent are portability problems in Python projects?
	3.2 Answering RQ2: What are the causes, symptoms, and fixes of portability problems?
	3.3 Answering RQ3: How good are existing tools at detecting and fixing portability issues?
	3.4 Answering RQ4: How Do Developers Respond to Reported Portability Issues?

	4 Lessons Learned
	5 Threats to Validity
	6 Related Work
	6.1 Empirical Studies on Software Portability
	6.2 Cross-Platform Testing and Defect Studies
	6.3 Dynamic Analysis for Portability
	6.4 API Specification Nondeterminism
	6.5 OS Variability and System Reliability
	6.6 Static Analysis for Python
	6.7 Performance and Portability.

	7 Conclusions and Future Work
	Acknowledgments
	References

