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Abstract

Simulation-based testing is the standard practice for assessing the
reliability of self-driving cars’ software before deployment. Existing
bug-finding techniques are either unreliable or expensive. We build
on the insight that near misses observed during simulations may
point to potential failures. We propose Foresee, a technique that
identifies near misses using a misbehavior forecaster that computes
possible future states of the ego-vehicle under test. Foresee per-
forms local fuzzing in the neighborhood of each candidate near
miss to surface previously unknown failures. In our empirical study,
we evaluate the effectiveness of different configurations of Foresee
using several scenarios provided in the CARLA simulator on both
end-to-end and modular self-driving systems and examine its com-
plementarity with the state-of-the-art fuzzer DriveFuzz. Our results
show that Foresee is both more effective and more efficient than
the baselines. Foresee exposes 128.70% and 38.09% more failures
than a random approach and a state-of-the-art failure predictor
while being 2.49× and 1.42× faster, respectively. Moreover, when
used in combination with DriveFuzz, Foresee enhances failure
detection by up to 93.94%.
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1 Introduction

Simulation-based testing [26, 34] is the de facto approach for Au-
tonomous driving systems (ADS) testing [51, 64] as real-world
physical testing, albeit important, has severe time, resource, and
legal limitations [47]. Simulators enable developers to assess the
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reliability of the ADS before deployment as they consist of vir-
tual simulation platforms in which developers “plug” their ADS
and test it against challenging conditions. A test describes a route
that an ADS must complete within a map representing an urban
environment containing static and dynamic objects (e.g., traffic
signs and other vehicles). Prior work has been proposed to gener-
ate test cases for ADS, particularly leveraging search-based opti-
mization [1, 4, 5, 15, 34, 35, 38, 43] and fuzzing [9, 22, 28, 31, 63],
which are characterized by drawbacks in terms of effectiveness
and efficiency. Concerning the former, these solutions require the
exploration of a vast multi-dimensional search space to pinpoint
critical conditions. This is problematic due to the significant time
and resource overhead, as running a single test case on a driving
simulation platform can take several minutes. About the latter, ex-
isting testing techniques either apply mutations at the scenario level
in the initial state of a simulation, e.g., the number and position of
the vehicles at the beginning of the simulation, or guide the search
relying on the global ADS behavior during the entire simulation
or static features of test cases, such as the number of bends of a
road [6]. As a consequence, these techniques are oblivious to near

misses, i.e., circumstances where a failure would occur with mini-
mal modifications to certain intermediate states of a simulation in
which the ADS was close to failure. Overlooking near misses limits
the potential of test generators to reveal failures and potentially
inflates the safety perception of ADS.

This paper aims to improve simulation-based testing of ADS in
terms of effectiveness and efficiency by investigating the problem
of detecting and exploiting near misses during virtual simulations.
Instead of relying on global or initial states of a scenario-based
test, we target focused testing of intermediate states occurring
during failure-free simulations. We leverage the insight that critical
scenarios may exist within driving simulations, where even minor
modifications, such as slight speed adjustments at an intersection,
could expose failures.

We propose Foresee (FOREcasting unSafe Events and Emergency
situations), a focused system testing technique for ADS. Foresee
uses a monitor to measure risk during the simulation of a given
test case. It uses risk data to derive, classify, and prioritize short-
running test cases. Foresee fuzzes the inputs of these local and
seemingly relevant test cases to find failures. More specifically,
Foresee uses telemetry data (i.e., velocity, yaw rate, position, and
relative distances to other agents) collected during simulation to
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Figure 1: Illustrative example showing a near miss from

a failure-free simulation (A/B) and collision from a sub-

simulationwhichwasmutated and clipped by Foresee (C/D).

automatically identify conditions in which the system is close to
failure. This paper focuses on the identification of collisions, being
the primary acceptance criteria for the safe deployment of ADS. We
show that telemetry data offers clues about the failure likelihood of
the ADS. Foresee forecasts potential failing conditions, such as the
identification of vehicles or pedestrians that are crossing the future
trajectory of the vehicle under test. Hazardous driving conditions
are detected when the failure likelihood increases in a future state
of the simulation, as predicted by Foresee.

Figure 1 shows an illustrative example of a near-miss situation
and Foresee in action. The images A and B display consecutive
snapshots of a nominal failure-free simulation. Note that the (future)
trajectory of the ego vehicle and the trajectory of the NPC vehicle
would eventually cross. However, due to the low speed of the NPC,
the two vehicles do not collide (image B). We refer to such missed
cases from the original simulations as “nearmisses”. ImagesC andD
display a failure condition that Foresee reports. Foresee identifies
the simulation segment at which the vehicles would have eventually
intersected as a risky point. Then, it “clips” the risky segment from
the original simulation and creates new focused simulations derived
from the clipped segment. In this example, the new simulation is
obtained by mutating the model of the NPC vehicle (image C). The
new simulation results in a collision between the ego vehicle and
the mutated NPC, which is faster than the original NPC (image D).

We evaluated the effectiveness of Foresee in the CARLA simula-
tor [13], using ADS available from the literature and a diverse set of
complex urban scenarios in which we observed many near-miss sit-
uations [53]. In our experiments on 34,416 simulations accounting
for more than 609 individual failures, Foresee was able to surface
up to 6.74% additional failures from near misses, a 38.09% increase
with respect to SelfOracle [50], a state-of-the-art misbehavior
predictor based on autoencoders, and a 128.70% increase with re-
spect to a random assessment of risk. Foresee also demonstrates its
efficiency against all the other baselines by discovering collisions
1.42× faster than SelfOracle and 2.49× faster than Random. We
also observed a 318.29% more efficient discovery of failures with
the best-performing configuration of Foresee relative to a ground
truth generated from an exhaustive search. Additionally, we show
that Foresee complements the state-of-the-art fuzzer DriveFuzz up
to a 93.94% failure exposure increase.

Our paper makes the following contributions:
Technique. A technique for forecasting ADS misbehavior based on
the kinematic state of the ego vehicle. Our approach is implemented
in the publicly available tool Foresee [55].
Evaluation. An empirical study showing that Foresee’s risk-based
assessment outperforms a random and a black-box approach Self-
Oracle [50] in terms of near-misses detection and improves the
fuzzer DriveFuzz [28] in terms of failure exposure.
Dataset. A dataset of ADS failures to evaluate the performance of
failure prediction systems and test generators for ADS. The tool
and evaluation data are publicly available [55].

2 Background

ADS are software systems developed with increasing capabilities to
drive vehicles autonomously. ADS are usually designed following a
modular architecture that includes perception, prediction, planning,
and control modules [3, 25, 61]. Driving simulation platforms are
the de facto choice in the industry for developing and testing ADS
before real-world testing on roads [17, 18, 47]. In the remainder of
this section, we describe the nomenclature used in this paper.
Scenario. Scenarios define high-level traffic situations involving
vehicle movements and interactions, commonly used for testing
ADS behavior. These are often derived from real-world data, such
as “pre-crash” reports from agencies like the US NHTSA [40], and
are used to evaluate safety-critical responses. A scenario speci-
fies the sequence of events in a simulation, including interactions
with actors such as pedestrians jaywalking, or vehicles running
red lights. It incorporates both static elements (e.g., traffic lights,
crosswalks, trees) defined by the map layout, and dynamic elements
such as the ego vehicle and Non-Playable Characters (NPCs), which
follow scripted behaviors. Scenarios help uncover failures by cap-
turing both routine and unexpected interactions between vehicles,
infrastructure, and pedestrians.
Test Case. Given a scenario, a simulation-based test case is charac-
terized by an initial state and a route. The initial state outlines the
conditions of both static and dynamic objects at the beginning of
the simulation, including the positions, velocities, and states of all
objects in the scenario. The route specifies the path the ego vehicle
is expected to follow during the simulation. It is typically defined in
terms of a starting and ending point or as a sequence of waypoints
within the map through which the ego vehicle should navigate. In
summary, a route establishes a possible ground truth trajectory
that the ego vehicle should follow in the simulation.
Failures. ADS are designed to meet several requirements, encom-
passing factors about passenger safety and comfort [8]. Driving
simulation platforms automatically log any rule violations that oc-
cur during testing. Among these, safety violations are of utmost
concern, particularly when it comes to autonomous driving, as they
can potentially lead to vehicle crashes and casualties. This work
focuses on predicting collisions. Collision avoidance is a primary
prerequisite to be met as a self-driving vehicle must stay in its lane
and prevent collisions to gain public trust and acceptance for pro-
duction use. Our categories of failures include collisions involving
the ego vehicle with elements beyond the road, such as pavements
or poles, pedestrians, or other vehicles (Section 4.4).
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3 Approach

Foresee aims to detect the occurrence of unexposed system failures
during simulation-based testing of ADS. It builds on the observation
that infractions are relatively rare compared to near misses. For
example, on average, DriveFuzz [28] exposed 19 violations in 360
minutes (≈19 minutes per failure), whereas AV-Fuzzer [31] exposed,
on average, 50 failures in 1,000 simulations (20 simulations per
failure) [63]. The unique aspect of Foresee is that it exploits near
misses observed during simulations to detect failures.

A test suite TS consists of test cases associatedwith scenarios that
are challenging for an autonomous vehicle. For example, Scenario 4
of the CARLA leaderboard [53] deals with situations where the ego
vehicle finds an obstacle on the road while performing a maneuver,
and it must perform an emergency brake or an avoidance maneuver.

Foresee focuses on failure-free test cases, aiming to uncover
missed failures that occur in near-critical conditions. This focus
is motivated by the high cost of simulation-based testing, which
makes it valuable to reuse simulations that already exhibit such
near-critical behavior. Although any test could theoretically be
forced into failure with unrealistic changes (e.g., excessive NPC
speeds), Foresee prioritizes preserving realism. It introduces only
small, targeted mutations and applies sanity checks to ensure con-
sistency with the original scenario’s intent.

3.1 Overview

Foresee takes as input a test case that does not reveal failures
in nominal conditions (i.e., a failure-free test case) and reports
infractions as output. The upper portion of Figure 2 illustrates the
Foresee pipeline, consisting of three tasks, namely Misbehavior
Forecaster, Scenario Clipper, and Scenario Mutator.

TheMisbehavior Forecaster❶ is responsible for identifying risky
conditions during a simulation by tracking the position, speed, and
steering angle of the NPCs at each time frame. Using the informa-
tion in the collected execution traces, it then predicts which parts of
the simulation are more likely to cause infractions. This component
reports a ranked list of simulation timestamps sorted by a critical-
ity score based on the probability of the ego vehicle to intersect
NPC future trajectories; we hereafter refer to this list’s elements as
risky points. Foresee attempts to find potential modifications in the
original simulation around these risky points to reveal previously
unforeseen failures. To this aim, the Scenario Clipper ❷ is used
to reconstruct a feasible CARLA-runnable scenario in the neigh-
borhood of a risky point. For each risky point, Foresee computes
start and end points from the original simulation that include the
given likely infraction-inducing point. Then, it retrieves the list
of NPCs relevant for that subset of the simulation. This is done
to reduce unnecessary computation and focus risk assessment on
meaningful threat sources. Finally, the Scenario Mutator ❸ intro-
duces mutations in the initial states of the new scenario, effectively
creating small variations on the intermediate states of the original
simulation. At the end of the process, Foresee runs the derived
(short) simulations and reports test cases revealing infractions.

In summary, Foresee uses a combination of misbehavior fore-
casting, scenario clipping, and local scenario-level mutation to find
unforeseen failures. It reports failure-revealing test cases without
executing expensive fuzzing campaigns.

3.2 Misbehavior Forecaster

In this paper, we propose a novel type of predictor in which risk
is assessed using telemetry data to forecast potential failing condi-
tions, such as vehicles or pedestrians that are crossing the future
trajectory of the vehicle under test.

The misbehavior forecaster takes a test case 𝑡𝑐 as input and
returns a list of risky points ranked by their likelihood of causing
an infraction. The lower part of Figure 2 illustrates the four-step
workflow of Foresee to obtain the ranked list of NPCs.
Step 1a: Proximity NPC identification. This step identifies the
NPCs that approach the ego vehicle within a certain threshold
during the original simulation. To do so, Foresee computes the
set Close NPCs describing the moment at which NPCs that came
within the threshold are closest to the ego vehicle. The set contains
pairs with the simulation frame of the close encounter and the
simulation ID of the corresponding NPC, and is further categorised
in subsequent steps. The NPCs that are not within the threshold
are not considered and are therefore discarded (Discarded NPCs).
Step 1b: Crossing NPC identification. For each NPC identified
in the previous step (Close NPCs), Foresee retains those that cross
the ego vehicle trajectory for further categorization. This filter-
ing process yields two groups of NPCs: Crossing NPCs contains
NPCs that intersect with the ego vehicle path during any simula-
tion frame, and its subset, Critical crossing NPCs, which includes
NPCs that cross the ego vehicle and do so within a limited dis-
tance from it. The remaining NPCs are classified as Non crossing

NPCs= {𝑥 | 𝑥 ∈ Close NPCs and 𝑥 ∉ Crossing NPCs}. These NPCs
are further analyzed in step 1c.
Step 1c: Non-crossing NPC identification. In this step, Foresee
identifies vehicle trajectories that currently do not cause collisions,
but could result in collisions with the ego vehicle with minimal
changes, such as slight modifications of NPC behaviour (e.g., speed,
or steering profiles). For each NPC in set Non crossing NPCs, Fore-
see generates 𝑁 perturbations of the original ego vehicle trajectory
by introducing a small error in the velocity and yaw rate values,
following a trajectory rollout (control-perturbation) sampling strat-
egy commonly adopted in local planning for cars [37], making sure
that the perturbations remain within acceptable localization error
bounds, following the guidelines by Reid et al. [42].

It then evaluates if any of the newly generated ego vehicle tra-
jectories is below a distance 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to the NPC. If so, Foresee
saves the NPC in the set Critical NPCs. All Non-crossing NPCs ids
that do not meet this distance requirement are saved in Non-critical

NPCs. The goal of this procedure is to account for the randomic-
ity of the self-driving system under test, which could behave in
a slightly different manner between different runs of the same
scenario, therefore producing an unforeseen, dangerous situation.
Step 1d: Rank NPCs. In this step, Foresee ranks the risky points
associated with the NPCs in the aforementioned groups according
to their risk of causing a collision with the ego vehicle, and based
on the type of NPC: pedestrians or vehicles (see step 1d of Figure 2).
If multiple NPCs are associated with the same risk level, Foresee
gives a higher score to NPCs that come closer to the ego vehicle
trajectory during the simulation. For each of the ranked NPCs, our
approach collects the simulation frame at which the actor comes
closest to the ego vehicle during the nominal simulation.
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Figure 2: An overview of Foresee (top), and the logic of the Misbehavior Forecaster in detail (bottom).

3.3 Scenario Clipper

The scenario clipper component of Foresee is responsible for creat-
ing a scenario reflecting solely the risky conditions observed during
the execution of the original scenario. We use the term “clip” to
indicate that only a subset of the original scenario is retained.

The top nrp risky points identified by the Misbehavior Forecaster
(Section 3.2) determine the timestamps at which the simulation
will be clipped, where nrp is a hyperparameter that determines
how many risky points should be considered for clipping. The
parameters 𝑜𝑏 and 𝑜𝑎 indicate the length of the clip. For each chosen
risky point rp, Foresee clips the scenario from timestamp rp − ob

to timestamp rp + oa. To restore the state of the original simulation
at timestamp 𝑟𝑝 − 𝑜𝑏 , Foresee saves the location, direction, and
model of each NPC. In this way, the clipped scenario is “centered
around” the risky point rp. For timestamp rp − ob, our approach
stores the exact location of the ego vehicle at that timestamp. This
information is useful to set the starting waypoint swp for the clipped
scenario. Concerning the ending waypoint ewp , the selection is more
challenging. Indeed, we observed that the location of the ego vehicle
at timestamp rp + oa often results in invalid simulations in CARLA,
because the simulator maintains specific sets of waypoints that
can be used as a route in a scenario. As a working solution, our
approach retrieves, from the log of the original simulation, a list
of valid waypoints and uses the closest waypoint to the location
of the ego vehicle at timestamp rp + oa as the ending waypoint
ewp . Finally, a new route XML file is created in which the clipped
scenario starts at swp and ends at ewp .

3.4 Scenario Mutator

For each clipped scenario, Foresee applies NPC-focused mutations.
The rationale is to assess whether the ego vehicle can cope with
situations that are analogous to the one observed during the riski-
est parts of the original simulation, yet they are slightly different.
For each risky point, Foresee generates 𝑐 mutated children (Sec-
tion 3.3), executes them, and reports the number of collisions. Our
approach retains the original number of NPCs while varying certain
properties. Two mutation operators are currently supported.
NPC Model Swapping. The Scenario Mutator swaps an NPC’s
vehicle model with another of the same type. For example, a bicycle
may be replaced with another bicycle or a pedestrian, while a car
is only substituted with another car. This can impact the vehicle’s

kinematic characteristics, such as speed differences between the
original and replacement car. The replacements are limited to the
“relevant” NPCs in the neighborhood of the ego vehicle. To identify
these relevant NPCs, themisbehavior forecaster reports a ranked list
of NPCs that approached the ego vehicle along with the time frame
in which they were closest. Of these, only the closest is selected
for mutation. Foresee uses this information to select the NPCs for
which their time frame lies within the interval [rp − ob, rp + oa],
where 𝑟𝑝 denotes the riskiest point selected from the ranked list
and ob and oa denote, respectively, the offsets before and after the
risky point delimiting the period of a new simulation.
Steering Angle Perturbation. The Scenario Mutator perturbs
the current steering angle of the closest NPC to the ego vehicle as
another form of mutation. To introduce variations in the steering
angle, Foresee tracks the closest vehicle to the ego vehicle npcclosest
in a test case at the beginning of the risky interval, i.e., at rp − ob.
Afterwards, for each child simulation, the Scenario Mutator applies
a random steering angle to 𝑛𝑝𝑐𝑐𝑙𝑜𝑠𝑒𝑠𝑡 . The simulator accepts values
within the range of [−1.0, 1.0]; a value within this range is randomly
selected for the steering angle, following existing thresholds [42].
Validity/Realism Check. To maintain the validity and realism
of the original simulation, the Scenario Mutator produces new
short-lived simulations introducing modifications in existing NPCs
within the domain model and constraints of the CARLA simulator.
This ensures that the resulting mutations are valid and realistic
by design, as they operate within the NPC and kinematic space
allowed in the CARLA simulator. The ScenarioMutator also ensures
that the newly mutated vehicle model avoids collisions with other
NPC vehicles upon spawning at the beginning of the simulation,
potentially due to the increased length of the new model vehicle.
To achieve this, our approach computes the distances between each
pair of NPC vehicles and retains only the valid vehicle models.
A valid vehicle model fits within the gap between two adjacent
NPCs and does not cause immediate collisions. Additionally, certain
sensors on the map at the initial point of a simulation can be placed
as invisible objects, causing collisions with NPC vehicles if placed
directly on the road. To avoid inflating the number of collisions
with these phantom objects, we increment the z-axis value of the
locations by a small constant value z_offset = 2 when saving the
location. Since the simulator accounts for gravity, these vehicles
are automatically positioned on the ground upon spawning.
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4 Evaluation

4.1 Research Questions

RQ1 (effectiveness): How effective is Foresee in exposing misbe-

haviors in near-miss scenarios compared to exhaustive search? How

does effectiveness vary with clip sizes and the number of child tests?

RQ2 (comparison): How does Foresee compare with alternative

misbehavior prediction techniques (Exhaustive, Random and Self-

Oracle) and proximity-based ranking?

RQ3 (efficiency): How efficient is Foresee in exposing misbehaviors

in near-critical situations?

RQ4 (complementarity): Does Foresee improve an existing state-

of-the-art fuzzer?

RQ5 (generalizability): Does Foresee generalize to other scenarios

and industry-grade ADS?

The first research question evaluates the ability of Foresee to
detect near misses and generate failures. We evaluate effectiveness
when varying two important parameters: the size of the clipped
scenarios (as per 𝑜𝑎+𝑜𝑏 ) and the number of near misses to exploit in
each test (as per 𝑛𝑟𝑝 ). Intuitively, longer clips and a higher number
of risky points may reduce the tool’s efficacy as the technique is
tailored for targeted risk selection. We also compare the precision
of Foresee against an impractical Exhaustive approach that ap-
proximates an upper bound on the possible number of failures by
applying fuzzing at each timestamp (excluding the first 𝑜𝑏 seconds).

The goal of the second research question is to measure the ability
of Foresee’s misbehavior forecaster component (Section 3.2) to
detect risky points. We compare Foresee against two baseline ap-
proaches, namely Random and SelfOracle. The Random baseline
selects a waypoint for local fuzzing at random, clips the simulation
around that waypoint, and mutates its corresponding initial state.
The second approach replaces the kinetics-driven misbehavior fore-
caster of Foresee with SelfOracle [50], a data-driven misbehavior
predictor for ADS based on autoencoders.

The third research question evaluates how fast Foresee exposes
misbehaviors. We hypothesize that Foresee exposes failures faster
because only parts of the original simulation are used and executed.
This research question evaluates this hypothesis.

The fourth research question evaluates whether Foresee can
complement an existing state-of-the-art fuzzer, specifically Drive-
Fuzz [28], by uncovering failures in non-failing test cases.

Lastly, the fifth research question evaluates the generalizabil-
ity of Foresee across additional complex urban scenarios, and an
evaluation using an industrial-grade ADS.

4.2 Objects: Simulator, Scenarios, and ADS

4.2.1 Simulator. We used the CARLA simulator for self-driving
cars [13] (v. 0.9.10.1), a driving simulator developed with the Unreal
Engine 4 [14] used in previous ADS testing literature [28, 35, 63].
We chose CARLA as it supports complex urban scenarios with
many configurations of static and dynamic objects, and provides a
rich set of sensors (e.g., cameras, LiDAR, GPS, and radar) to enable
the observation of the status of the ADS throughout the simulation.

4.2.2 Scenarios. CARLA providesmultiple closed-loop urbanmaps
for ADS testing. We use Town10, a default map with standard
environmental settings (e.g., sunny weather). Each map includes

Table 1: Characterization of scenarios of Town10.

Scenario Description # Routes

3 NPCs cross in front of the ego vehicle, requiring braking 16
4 Obstacles appear post-turn, requiring reactive avoidance 46
7 NPCs run red lights; ego vehicle must avoid collisions 19
8 ego vehicle makes unprotected left turn, yields to traffic 19
9 ego vehicle turns right, yielding to crossing traffic 20

driving scenarios, defined by multiple test cases (called routes in
CARLA). Table 1 summarizes the five selected scenarios, chosen
for their diversity, totaling 120 test cases.

4.2.3 ADS under Test. Weuse InterFuser [44] and Transfuser [10],
two ADS that achieve top performance on the CARLA leader-
board [52] and have been adopted in recent work [21, 23, 24].

InterFuser is a multi-modal fusion model designed for com-
plex driving scenarios. It uses camera and LiDAR inputs, along
with interpretable intermediate features (e.g., planned trajectory,
traffic signals), to produce safe driving commands (e.g., steering,
throttle). Features are extracted using ResNet backbones and fused
via a transformer module, followed by a Gated Recurrent Unit for
trajectory prediction. A safety controller uses high-level cues to
constrain final control outputs.

Transfuser is a transformer-based fusion model that integrates
spatial and temporal features from camera and LiDAR inputs using
cross-attention [57]. Unlike InterFuser, Transfuser performs
sensor fusion at a later stage, combining image and LiDAR fea-
tures extracted via ResNet encoders. A waypoint prediction module
outputs the ego vehicle vehicle’s future trajectory, which informs
low-level driving actions.

4.3 Competing Methods

Since direct baselines for our approach are not available, we conduct
experiments exploring different methods for detecting risky points
and applying alternative ranking strategies, as described below.

4.3.1 Risk Scenario Identification. To evaluate risk-scenario identi-
fication, we compare Foresee against three baseline variants that
retain the Scenario Clipper (Section 3.3) and Scenario Mutator (Sec-
tion 3.4) components, but substitute the misbehavior forecaster
with alternative strategies, described below.
Exhaustive.We compute an upper bound on failure detection by
exhaustively sampling the simulation timeline, independent of risk
scores. Although computationally expensive and impractical in real-
world use, it serves as a reference for maximum possible coverage.
Exhaustive selects every second of the original simulation as the
center of a clip, ignoring risk scores, and constructs mutated sub-
simulations from these segments. For instance, with 𝑜𝑏 = 𝑜𝑎 = 3
(i.e., a 6s clip), a 48s simulation yields 45 clips (skipping the first 𝑜𝑏
seconds). Although these clips often overlap, creating significant
computational overhead, mutations at different start times can still
produce varied outcomes. This baseline illustrates how close a
technique comes to uncovering all potential failures, serving as a
proxy for the ground truth in near-miss detection.
Random. This approach randomly selects waypoints from the orig-
inal route and uses them as focal points for clipping and fuzzing.
For this baseline, instead of using the misbehavior forecaster, we
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randomly select waypoints from the original route and apply clip-
ping and mutation around them. This comparison aims to show
how Foresee compares against a technique that does not use any
guidance to select segments for local fuzzing.
SelfOracle. SelfOracle [50] is a black-box ADS misbehavior
predictor [50]. Even if SelfOracle was not proposed for test gen-
eration, this baseline is relevant because SelfOracle is designed to
detect risky situations that result in failures of ADS. SelfOracle
requires images captured by the front-facing camera for training
and inference. We use the best configuration of SelfOracle pre-
sented in the original paper, i.e., a variational autoencoder (VAE)
that reconstructs driving images and uses the reconstruction loss
as a measure of confidence. For training SelfOracle, we collected
151 images at 20 FPS from the map of “Town10” since this map is
used in all of our experiments. As the original training sets from the
InterFuser and Transfuser papers are not available, we collected
a training set size in line with what was described in the paper,
i.e., 125k for “Town10” at 2 FPS. The autoencoder uses the Adam
optimizer [29] to minimize the mean squared error (MSE) loss over
10 epochs, using a learning rate of 0.001. During inference, for each
frame of the simulation, SelfOracle computes a reconstruction
error; we average the reconstruction errors within pairs of consec-
utive waypoints (i.e., a segment). This average value indicates the
risk of the segment, and we rank simulation segments by this risk
value. We set a threshold 𝛾 = 0.95 for the expected false alarm rate
in nominal conditions to identify risky conditions.

4.3.2 NPC Ranking. To evaluate the effectiveness of risk-scenario
prioritization, we compare the risk-based strategy of Foresee’s
misbehavior forecaster with a proximity ranking method. Instead
of performing the complete trajectory-based critical frame ranking
used in Foresee (Section 3.2), we execute only the first step: Prox-
imity NPC identification. This step consists of identifying all NPCs
that are within a set radius during the original simulation. Thus,
all NPCs in the Close NPCs set of Foresee’s misbehavior forecaster
are candidate risky points, which we then rank according to their
order of appearance in the simulation.

4.4 Experimental Setup

4.4.1 RQ1. We execute various configurations on the scenarios
from Table 1 and their corresponding test cases. To identify NPCs in
the proximity of the ego vehicle, we used the thresholds 𝑡ℎ1 = 10𝑚
and 𝑡ℎ2 = 50𝑚 for vehicles and pedestrians, respectively. For non-
crossing NPC identification, we use the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2𝑚. These
values were tuned during preliminary pilot experiments.

For each near miss, we clipped the test case to contain the near
miss within the offsets 𝑜𝑏 and 𝑜𝑎 . For simplicity, we considered
offsets of the same size 𝑜𝑏 = 𝑜𝑎 . For each clipped test case, we
generate 𝑐 = 4 mutated test cases by injecting mutations according
to Section 3.4 and execute the clipped and mutated test cases. We
determine the number of risky points to analyze as follows. For
each simulation, we identify risky points and consider the top 𝑛𝑟𝑝
risky points from the ranked list that the misbehavior forecaster
(Section 3.2) reports, unless the number of risky points identified is
less than 𝑛𝑟𝑝 , in which case we consider all identified risky points.
We obtain the number of risky points 𝑛𝑟𝑝 from the set {1, 2, 4}.
Considering the length of the generated test cases, we consider

𝑜𝑏 = 𝑜𝑎 ∈ {3, 5}, thus enabling sub-simulations 6s and 10s long.
Regarding the ranking method, we compare proximity ranking,
introduced in Section 4.3.2, with our Misbehavior Forecaster, which
is based on risk likelihood. For Exhaustive, we extract all possible
6s and 10s clips from the original test cases by treating each second
of the simulations as a risky point, i.e., taking 𝑜𝑎 + 𝑜𝑏 seconds long
cuts around each second of the original simulation. Given the high
cost of this approach, we executed it only for InterFuser.

We use the number of collisions as the key performance metric
for this research question (Section 2). We apply mutation operators
on these clips, run the experiments with the same mutation count
(𝑐), and compute the number of failures for comparison.

Overall, our experiment evaluates 12 configurations of Foresee
(i.e., 3 risky points × 2 simulation lengths × 2 ranking methods).
We empirically observed that shorter times are likely to produce
invalid simulations, whereas longer times jeopardize the benefits
of local fuzzing and simulation reuse.

4.4.2 RQ2. We execute Random and SelfOracle with the same
experimental setup from RQ1. More precisely, we use the same set
of scenarios and tests (Table 1), the same set of mutation operators
(Section 3.4), and the same configurations of Foresee (i.e., com-
binations of clip size and offsets). To assess the effectiveness of
Foresee’s risk-based strategy, we re-run it using the most effective
clip size identified in RQ1, but with only the first step of ranking
(Proximity NPC identification) as described in Section 4.3.2.

4.4.3 RQ3. We log the time that each failure was observed and
report the failure rate over time as an area under the curve (AUC).
In this case, the x-axis of the curve indicates time, and the y-axis
of the curve indicates the cumulative number of failures observed.
Intuitively, the larger the area, the better the efficiency.

To cope with the non-determinism of the driving platform, we
executed all the experiments 3 times and reported averages. Our
dataset has a total of 120 routes from 5 scenarios, 17 of which
have infractions when executed with InterFuser and 9 have infrac-
tions when executed with Transfuser. Consequently, we discarded
those cases, leaving 103 routes (i.e., test cases) for InterFuser and
111 for Transfuser. Each of these test cases is considered a seed
scenario, and from each of these test cases, we derive a maximum
of 4 risky points. We aimed to construct 4 clipped routes to get
data for 𝑛_𝑟𝑝 ∈ {1, 2, 4}, as well as 4 mutated routes per clipped
route from this collection of seed scenarios. Some seed scenarios
do not have 4 risky points, so the number of clipped scenarios
can be any value within the range 0 ≤ 𝑛𝑟𝑝 ≤ 4. For InterFuser,
we got a total of 297 clipped scenarios, and for Transfuser we
got 181 clipped scenarios, which yields a total of 1,782 test cases
for InterFuser and 1,086 test cases for Transfuser across 2 con-
figurations ((𝑜𝑏 + 𝑜𝑎) ∈ {6𝑠, 10𝑠}) and 3 repetitions. Considering
all configurations, we executed 34,416 test cases (3 techniques ×
4 mutations × 1,782 routes for InterFuser and 3 techniques × 4
mutations × 1,086 routes for Transfuser).

It is worth noting that although test cases derived from the orig-
inal input test are designed to be short running (i.e., 6s and 10s
long), in practice, they tend to take longer than the estimated time
because of traffic signals and vehicles getting stuck during the sim-
ulation. In our setting, our simulations took on average 15s for
6s-clips and 30s for 10s-clips. Thus, the average simulation time is
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Table 2: RQ1: Effectiveness of Foresee. Breakdown of col-

lisions per scenario, configuration, and ADS. E=Exhaustive.

#RPs=Number of risky points. #C.=Number of collisions.

clip duration = 6s clip duration = 10s

𝑛𝑟𝑝 1 2 4 E 1 2 4 E

#RPs #C. #RPs #C. #RPs #C. #C. #RPs #C. #RPs #C. #RPs #C. #C.

InterFuser
Scenario3 15 3 30 6 59 13 51 15 6 30 8 59 13 35
Scenario4 36 3 68 13 97 31 128 35 11 66 26 95 39 78
Scenario7 12 7 26 14 40 16 66 11 1 25 7 41 22 68
Scenario8 14 0 30 5 44 7 18 13 2 28 12 42 14 46
Scenario9 14 3 25 3 35 5 7 14 4 25 4 37 5 7

Σ 91 16 179 41 275 73 271 88 24 174 57 274 94 233

Transfuser
Scenario3 13 1 25 2 45 2 - 15 7 29 11 51 17 -
Scenario4 28 2 47 3 64 6 - 29 4 47 9 64 9 -
Scenario7 11 0 15 0 17 0 - 12 2 16 2 18 2 -
Scenario8 13 0 18 0 22 0 - 12 0 17 0 21 0 -
Scenario9 13 0 23 0 25 0 - 13 0 23 0 25 0 -

Σ 78 3 128 5 173 8 - 81 13 132 22 179 28 -

Total 169 19 307 46 448 81 - 169 37 306 79 453 122 -

22.5 seconds, with the estimated total computing time of our exper-
iments being more than 215.1 hours (22.5 ∗ 34,416/3, 600) or around
9 days. For the Exhaustive search, we created clipped and mutated
sub-simulations from each second of each seed scenario (we omit
the first 𝑜𝑏 seconds for each seed scenario, as it is not possible to
obtain a valid simulation). In total, this process took around 43 days
of execution time across 3 repetitions with InterFuser.

4.4.4 RQ4. DriveFuzz is a feedback-directed test generator. We
execute one iteration of DriveFuzz on the same 103 and 111 seed
routes identified in RQ3 for InterFuser and Transfuser respec-
tively. We then collect the identified failing cases and conduct a
second iteration of DriveFuzz on the remaining non-failing cases.
The obtained InterFuser and Transfuser routes in which Drive-
Fuzz did not detect any failures are then used to apply the best
performing configuration of Foresee, identified in RQ1. To answer
this research question, a total of 120 full-scenarios and 480 10s-
clips have been executed for each SUT, resulting in an estimated
execution time of 16 hours.

4.4.5 RQ5. We evaluate the ability of Foresee to generalize to
varying maps, agents, and weather conditions. Specifically, we
executed the best Foresee configuration on all scenarios of four
additional maps, namely Town01, Town02, Town03, and Town04,
for both the InterFuser and Transfuser. Moreover, we evaluate
the best-performing configuration in Town10 under an adverse
weather scenario characterized by high cloudiness, fog density, wet-
ness, and precipitation, with the sun positioned at a 45-degree angle.
To avoid confounding effects, we avoid adding further mutations
(e.g., model swapping or steering angle) to the sub-simulations and
measure the impact of weather on the agents. Finally, to assess the
applicability of Foresee to an industrial-grade autonomous driving
system, we evaluate its capability to identify risky scenarios in the
Apollo 8 framework [3].
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Figure 3: RQ2: Comparison of different configurations.

4.5 Results

4.5.1 RQ1 (effectiveness). Table 2 details the results, reporting, for
different clip durations (6s or 10s), the number of risky points (#RP),
and collisions (#Colls.) for different numbers of risky points (1, 2, or
4) and for the two evaluated SUTs (InterFuser above, Transfuser
below). For comparison, the column “#Colls.” under Exhaustive
represents the maximum number of collisions detected in an ex-
haustive search (Section 4.3.1), only for InterFuser. Intuitively,
as the number of risky points increases, Foresee exposes more
failures over time. For clip duration = 6s, the failure rate on In-
terFuser is 17.95% (16.33/91) when one risky point is selected,
22.86% (41/179.33) when two risky points are selected, and 26.51%
(73/275.33) when four risky points are selected. On Transfuser,
the rates are much lower, but maintain the same trend: 3.8% (3/78),
3.9% (5/128), and 4.6% (8/173), respectively. Similar considerations
hold for the clip duration=10s on InterFuser where we observe
failure rates of 27.27% (24/88), 32.76% (57/174), 34.19% (93.67/274)
for the configurations with 1, 2, and 4 risky points selected, re-
spectively. Transfuser achieves more modest gains: 16.0% (13/81),
16.7% (22/132), and 15.6% (28/179), suggesting diminishing returns
as more points are fuzzed. The Exhaustive column demonstrates
the number of collisions discovered by the exhaustive search and
acts as the ground truth for the potential collisions discoverable by
Foresee. For 𝑜𝑏+𝑜𝑎 = 6 and𝑛𝑟𝑝 = 4, Foresee discovers 73 collisions
compared to 271 collisions discovered by Exhaustive, demonstrat-
ing 26.94% coverage. Similarly, for𝑜𝑏+𝑜𝑎 = 10 and𝑛𝑟𝑝 = 4, coverage
for Foresee is 40.14% (93.67x 100 / 233.33), demonstrating the best
coverage amongst the 12 configurations of Foresee.

RQ1 (effectiveness): Foresee exposes many collisions from near

misses, with failure rates ranging between 17.95-34.19% for Inter-

Fuser and between 15.6-16.7 for Transfuser. We find the config-
uration with clip duration=10s and number of risky points=4 to
provide the best trade-off in terms of failure rate.

4.5.2 RQ2 (comparison). Figure 3 shows the distributions of the
number of collisions for Foresee, SelfOracle, and Random with
InterFuser (top) and Transfuser (bottom). The left and right
figures show the results for clip durations of 6s and 10s, respectively.
Foresee outperforms the baselines in all configurations except clip
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Table 3: RQ2: Comparison of Random, SelfOracle, and Foresee. Configuration 10 x 4 (𝑜𝑏 + 𝑜𝑎 = 10, 𝑛𝑟𝑝 = 4).

Random SelfOracle Foresee

#TCs F1 F2 F3 F4 F5 Σ F1 F2 F3 F4 F5 Σ F1 F2 F3 F4 F5 Σ

InterFuser
Scenario3 235 0 5.00 0 2.67 0 7.67 0 2.00 0 1.67 0 3.67 0 9.33 0 4.00 0 13.33

Scenario4 390 0.67 0 0 10.00 3.67 14.33 0 0 0 8.33 31.67 40.00 0.67 0 0.67 26.00 11.67 39.00
Scenario7 167 0 0 0 4.67 0 4.67 0 0 0 18.67 0 18.67 0 0 1.67 20.00 0 21.67

Scenario8 179 0.33 0 0.33 4.67 0.33 5.67 0 0 0 1.67 0.67 2.33 0 0 0 14.33 0 14.33

Scenario9 145 0 0 0 0.33 0 0.33 0 0 0 0.33 0 0.33 0 0 0 5.33 0 5.33

Σ 1116 1.00 5.00 0.33 22.34 4.00 32.67 0 2.00 0 30.67 32.34 65.00 0.67 9.33 2.34 69.66 11.67 93.66

Transfuser
Scenario3 202 0 5.67 0 0 0 5.67 0 13.67 0 0 0 13.67 0 7.00 0 9.67 0.33 17.00

Scenario4 252 0 0 0 6.67 2.67 10.00 0 0 0 8.33 1.33 9.67 0.33 0 0 8.33 0.33 9.00
Scenario7 71 0 0 0 1.33 0 1.33 0 0 0 0 0 0 0 0 0 2.00 0 2.00

Scenario8 78 0.33 0 0 3.33 0 3.67 0 0 0 0 0 0 0 0 0 0.33 0 0.33
Scenario9 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Σ 695 0.33 5.67 0 11.33 2.67 20.67 0 13.67 0 8.33 1.33 23.34 0.33 7.00 0 20.33 0.66 28.33

Total 1811 1.33 10.67 0.33 33.67 6.67 53.34 0 15.67 0 39.00 33.67 88.34 1.00 25.33 2.34 89.99 12.33 121.99

Table 4: RQ2: Statistical tests.

Comparison # sig (corr) 𝑑 range

InterFuser: Foresee vs SelfOracle 1/6 0.53–0.92
InterFuser: Foresee vs Random 3/6 0.54–1.70
Transfuser: Foresee vs SelfOracle 0/6 0.30–0.69
Transfuser: Foresee vs Random 0/6 0.11–0.36

duration=6s for Transfuser where no technique achieves adequate
performance in our experiments.

We provide detailed comparisons for the configuration 10x4,
which is the one with the best failure rate from RQ1 for Inter-
Fuser. For Transfuser, failure rates across all configurations with
clip duration=10 are very similar, so we chose 10x4 for consistency.
Table 3 shows, for each technique (rows) and SUT (InterFuser
above, Transfuser below), the average number of failures and their
nature. Column #TCs shows the number of test cases associated
with a given scenario. Columns F1, F2, F3, F4, and F5 show the dif-
ferent kinds of collisions detected, respectively related to collisions
involving the ego vehicle with elements beyond the road, such as
pavements or poles (F1), pedestrians (F2), and frontal (F3), lateral
(F4), or rear (F5) collisions with other vehicles. Column Σ shows
totals. Results are presented for each scenario separately, as well
as an aggregate. The table reinforces the effectiveness of Foresee
over the baselines, across all scenarios, failure types, and SUTs.
Overall, Foresee achieves, for InterFuser, a failure rate increase
of +186.69% and +44.09% with respect to Random and SelfOracle.

For Transfuser, the failure rate increases were +37.06% and
+21.38% over Random and SelfOracle, respectively. Over the two
SUTs, Foresee achieves +128.70% and +38.09% failure rate compared
to Random and SelfOracle. It also achieves a higher diversity of
failure kinds observed, even though failure F4 (lateral collisions
with other vehicles) is the most prevalent.

We measured the statistical significance of the differences us-
ing the nonparametric Wilcoxon rank-sum test [58], with 𝛼 =

0.05, and the magnitude of the differences using Cohen’s effect
size 𝑑 [11]. To account for multiple comparisons, we also applied
Holm–Bonferroni correction [2] to our p-values.

For most configurations with InterFuser (Table 4), the differ-
ences between Foresee and both baselines are statistically sig-
nificant (6x2, 6x4, 10x2, and 10x4), i.e., the 𝑝 value < 0.05 with a
medium to large effect size. For some configurations (6x1 and 10x1),
only the differences between Foresee and Random are statistically
significant, with medium/large effect sizes. InterFuser is a more
stable agent, and configurations with richer sampling (e.g., 10x2,
10x4, 6x4, 10x4) yield higher effect sizes, indicating that predictive
guidance benefits from more informative search spaces. TransFuser
proved more failure-prone, and thus simpler configurations (e.g.,
10x1, 10x2) are sufficient.

For Transfuser, configurations with clip duration=6s produce
a negligible number of collisions with any technique. For config-
urations with clip duration=10s, Foresee has an advantage over
SelfOracle with medium effect sizes for configurations 10x1 and
10x2, as well as a small effect size for 10x4. However, Foresee has
only a small effect size over Random in configuration 10x1, 10x2,
with a very small effect size (Cohen’s 𝑑=0.11) in configuration 10x4.

To assess the contribution of Foresee’s full risk-based ranking
strategy, Table 5 reports the results for both the Proximity-based
NPC selection baseline (Proximity rank, left-hand side) and Fore-
see’s complete ranking method (Foresee, right-hand side). The
table shows the number of risky points evaluated and the number
of collisions induced across scenarios, for different #RP values.

Across both systems under test, Foresee’s ranking strategy con-
sistently improves efficiency, measured as collisions per risky point,
compared to the proximity-only baseline. Under InterFuser, Fore-
see produces both more total collisions and higher efficiency. For
example, with #RP = 2, Foresee triggers 57 collisions from 174 risky
points (0.33 collisions per RP), while the proximity baseline triggers
just 19 from 181 points (0.10 per RP). With #RP = 4, the difference
is even more pronounced: 93 collisions for Foresee (0.34 per RP)
versus 30 for proximity (0.09 per RP). On Transfuser, the trend is
more nuanced. The proximity baseline reaches slightly more total
collisions (e.g., 34 vs. 28 at #RP = 4), but it requires significantly
more exploration, 384 risky points compared to 179. This results in
lower efficiency (0.09 collisions per RP vs. 0.16 for Foresee).
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Table 5: RQ2: Effectiveness of Foresee risk-based ranking.

#RPs=Number of risky points. #C. = Number of collisions.

Proximity rank Risk-based rank

𝑛𝑟𝑝 1 2 4 1 2 4

#RPs #C. #RPs #C. #RPs #C. #RPs #C. #RPs #C. #RPs #C.

InterFuser
Scenario3 15 0 29 1 58 7 15 6 30 8 59 13
Scenario4 37 1 73 6 131 8 35 11 66 26 95 39
Scenario7 11 2 23 3 40 3 11 1 25 7 41 22
Scenario8 17 2 33 4 62 7 13 2 28 12 42 14
Scenario9 10 4 23 5 44 5 14 4 25 4 37 5

Σ 90 9 181 19 335 30 88 24 174 57 274 93

#C / #RP 0.10 0.10 0.08 0.27 0.32 0.33

Transfuser
Scenario3 15 5 29 8 55 13 15 7 29 11 51 17
Scenario4 39 2 76 2 141 3 29 4 47 9 64 9
Scenario7 15 0 29 1 57 6 12 2 16 2 18 2
Scenario8 18 2 36 3 67 7 12 0 17 0 21 0
Scenario9 17 3 33 3 64 5 13 0 23 0 25 0

Σ 104 12 203 17 384 34 81 13 132 22 179 28

#C / #RP 0.12 0.08 0.09 0.16 0.17 0.16

Thus, while the proximity strategy occasionally triggers more fail-
ures in absolute terms, Foresee achieves comparable or better out-
comes with far fewer test executions, making it more cost-effective.

RQ2 (comparison): Foresee outperforms the considered baselines,

with a failure rate increase of +128.70% and +38.09% with respect to

Random and SelfOracle, respectively. Ablation results confirm that

Foresee risk-based ranking improves failure discovery efficiency

over a proximity-only baseline, across both systems under test, high-

lighting the benefit of Foresee risk-based prioritization.

4.5.3 RQ3 (efficiency). The Exhaustive search, executed on In-
terFuser, showed the maximum number of collisions discover-
able, but Foresee is more efficient in finding the collisions. For
𝑜𝑏 + 𝑜𝑎 = 6𝑠 and 𝑛𝑟𝑝 = 4, Exhaustive exposed 4.2 collisions per
hour (271/64h) compared to 15.53 collisions per hour (73/4.7h)
by Foresee, resulting in a 269.76% efficiency increase. Similarly,
for 𝑜𝑏 + 𝑜𝑎 = 10𝑠 and 𝑛𝑟𝑝 = 4, Exhaustive discovered 3.5 colli-
sions per hour (233.33/66.5h) compared to 14.64 collisions per hour
(93.67/6.4h) discovered by Foresee, a 318.29% increase.

Figure 4 shows, for both InterFuser and Transfuser, the cumu-
lative number of collisions detected by the techniques over time and
the area under the curve (AUC) associated with the corresponding
plots. The result indicates the superior ability of Foresee over the
baselines to efficiently expose failures, as evidenced by the position
of Foresee’s plot relative to the plot of the other techniques (and
higher AUC score). Foresee has an AUC score of 1910171.65, which
is 1.44×higher than the AUC score of SelfOracle and 2.62×higher
than the AUC score of Random for InterFuser, and shows a simi-
lar trend for Transfuser (AUC=223400.39, an increase of 1.27× and
1.74× against SelfOracle and Random). Across both SUTs, Fore-
see is 1.42× faster than SelfOracle and 2.49× faster than Random.
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Figure 4: RQ3: Efficiency of Random, SelfOracle, and Fore-

see for configuration 10 x 4 (𝑜𝑏 + 𝑜𝑎 = 10 and 𝑛𝑟𝑝 = 4).

Table 6: RQ4: Effectiveness of Foresee with DriveFuzz.

#F=Number of failures. +%=Percentage increase w.r.t. Plain.

Iteration 1 Iteration 2

Plain DriveFuzz Foresee
∑

DriveFuzz Foresee
∑

#F +#F +#F #F +% +#F +#F #F +%

InterFuser
Scenario 3 1 3 2 6 500 2 1 9 800
Scenario 4 6 4 5 15 150 7 5 27 350
Scenario 7 5 3 3 11 120 0 1 12 140
Scenario 8 2 6 7 15 650 3 5 23 1050
Scenario 9 3 2 2 7 133 3 0 10 233

Σ 17 18 19 54 217.65 15 12 81 376.47

Transfuser
Scenario 3 1 4 4 8 700 8 1 18 1700
Scenario 4 5 9 1 10 100 5 1 21 320
Scenario 7 0 4 2 6 - 0 4 10 -
Scenario 8 0 3 4 7 - 2 0 9 -
Scenario 9 3 1 0 4 33 1 0 5 66.67

Σ 9 21 11 41 355.56 16 6 63 600

RQ3 (efficiency): Foresee identifies collisions significantly faster

than the baselines. For InterFuser, the AUC of Foresee is

1.44× higher than SelfOracle’s and 2.62× higher than Random’s,

while for Transfuser, AUC increases by 1.27× and 1.74× compared

to SelfOracle and Random (1.42× and 2.49× faster overall).

4.5.4 RQ4: Complementarity. Table 6 presents the number of in-
fractions detected in the evaluated scenarios over two iterations
of DriveFuzz, together with the additional failures identified by
Foresee when applied to nonfailing cases. Each row reports the
plain infractions (on the original unfuzzed routes), followed by
the results of DriveFuzz and Foresee, for each iteration. The data
illustrate how Foresee uncovers additional failures beyond those
detected by DriveFuzz alone.

For InterFuser, in Iteration 1, DriveFuzz discovered 18 infrac-
tions, while Foresee found 19 additional ones. In Iteration 2, Drive-
Fuzz added 15 more, and Foresee contributed 12 additional failures.
This increased the total failure count from 17 (baseline) to 81, cor-
responding to a 376.47% increase. Foresee alone uncovered 31
failures, compared to 33 by DriveFuzz, which is a 93.94% increase
over DriveFuzz’s findings.

For Transfuser, DriveFuzz uncovered 21 infractions in Iter-
ation 1 and 16 in Iteration 2, while Foresee identified 11 and 6
additional failures, respectively. The cumulative failure count thus
rose from 9 to 63, a 600.00% increase over the baseline. Foresee
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contributed 17 failures in total, an increase of 45.95% compared
to the 37 found by DriveFuzz. Notably, in Scenarios 7 and 8 for
Transfuser, which had zero baseline infractions, Drivefuzz and
Foresee combined revealed multiple failures (10, and 9).

RQ4 (complementarity): Foresee complements the state-of-the-

art fuzzer DriveFuzz by uncovering 31 additional failures for Inter-

Fuser and 17 for Transfuser, corresponding to a 93.94% and 45.95%

increase over the failures found by DriveFuzz alone. In multiple

scenarios (e.g., Scenario 7 and 8 in Transfuser), Foresee detected

failures where DriveFuzz found none, suggesting its effectiveness in

extending the coverage of existing fuzzing campaigns.

4.5.5 RQ5: Generalizability. Table 7 (Towns) shows Foresee’s ca-
pability of revealing infractions on four additional maps: Town01,
Town02, To,wn03 and Town04 with the InterFuser and Trans-
fuser agents. Foresee can effectively discover infractions of differ-
ent categories across all towns and agents. We find that the most
common infraction type is F4 (lateral collision), observed 181 times,
whereas F3 (frontal collision) is the most uncommon, observed 10
times. For Transfuser, we find 115 previously unknown collisions
across 1,079 test cases. For InterFuser, we find 176 previously
unknown collisions across 1,307 test cases.

Table 7 (Apollo) show Foresee’s effectiveness with the Apollo
framework. Unlike InterFuser and Transfuser which are end-to-
end systems, Apollo is a multi-modal system [59] where different
modules (e.g., planner, control, PID) control different aspects of
driving. Consequently, its behavior differs from that of the other
agents, as reflected in the distribution of collision types in Table 7.
Aside from a few lateral collisions and instances where the vehi-
cle remained stationary, most collisions were classified as type F1
(object). We discuss these failures in more detail in Section 4.6.

Table 7 (Heavy Weather) demonstrates Foresee’s ability to
reveal infractions under heavy weather conditions. In these condi-
tions, both Transfuser and InterFuser reveal 34 lateral collisions
(F4), which is the majority. It also reveals 8 pedestrian (F2) and 4 rear
(F4) collisions and avoids frontal/object collisions. In heavy weather,
both agents drive more carefully and slowly to avoid frontal colli-
sions and colliding with roadside collisions, but the effects of low
visibility causes lateral and pedestrian collisions, while driving too
slow in risky situations causes some rear collisions.

RQ5 (generalizability): Foresee is capable of generalizing under
different maps, weather conditions, and an industrial-grade multi-

modal agent, Apollo. For example, Foresee reveals 291 collisions

from previously failure-free scenarios in four different towns with

Transfuser and InterFuser, 30 new collisions with Apollo, and 46

new collisions under heavy weather conditions.

4.6 Qualitative Analysis

To evaluate whether Foresee exploits segments already close to
failure or uncovers meaningful, non-trivial vulnerabilities, we con-
ducted a qualitative analysis on the data from the exhaustive search
(RQ1). For each failure-free test, we found themost critical ego–NPC
interactions using simulation logs and characterized them using
three interpretable features: minimum time-to-collision (TTC), rela-
tive distance, and relative speed. We labeled each interaction based

Table 7: RQ5: Generalizability. Impact of town, agent (Apollo),

and heavy weather. Configuration 10 x 4 (𝑜𝑏 +𝑜𝑎 = 10, 𝑛𝑟𝑝 = 4).

Map Agent #TCs F1 F2 F3 F4 F5 Stuck Σ

Towns

Town01 InterFuser 238 8 3 0 17 4 0 32
Transfuser 205 0 0 0 10 6 0 16

Town02 InterFuser 160 22 0 5 17 3 0 47
Transfuser 143 0 0 0 1 0 0 1

Town03 InterFuser 512 0 0 1 25 0 0 27
Transfuser 324 0 15 0 15 0 0 30

Town04 InterFuser 397 24 0 0 44 1 0 70
Transfuser 407 0 0 4 52 12 0 68

Σ 2386 54 18 10 181 26 0 291

Apollo
Town01 Apollo 80 15 0 0 1 0 0 16
Town03 Apollo 64 6 0 0 3 0 5 14

Σ 144 21 0 0 4 0 5 30

Heavy Weather

Town10 InterFuser 539 0 3 0 29 4 0 36
Transfuser 237 0 5 0 5 0 0 10

Σ 776 0 8 0 34 4 0 46

on whether it led to a failure during fuzzing and trained a Random
Forest classifier [19] on each scenario to predict failure-prone inter-
actions. The models achieved recall in the 0.64-0.86 range (except
for Scenario 9 at 0.31), and precision in the 0.12-0.41 range. Results
suggest that, while failures can often be detected, the boundary
between safe and unsafe behaviors is complex.

Failures rarely stemmed from a single extreme factor (e.g., low
TTC), but instead from nuanced combinations. In Scenario 3, fail-
ures occurred with high TTC (>1482s) and long distances (>150m)
when paired with modest speeds (>−3.1m/s). Scenario 4 showed
failures at distances up to 83.99m when relative speed was mild
(>−4.2m/s). In Scenario 8, short distances (≤3.29m) combined with
low relative speeds (>0.0m/s) triggered failures. Scenario 9 revealed
failures even with high TTC (>30s).

Regarding Apollo’s failures, when a nearby NPC vehicle ap-
proaches the ego lane, the local planner tends to generate sharper
avoidance trajectories. This behavior leads the control module to
produce oscillatory, wobble-like movements, resembling the re-
sponse of a PID controller under suboptimal tuning. These oscil-
lations can amplify over time, causing the vehicle to drift off the
lane and eventually collide with static objects such as walls, poles,
or benches—obstacles that the perception system does not consis-
tently detect in advance. Consequently, most failures correspond to
object collisions (type F1). Under normal driving conditions, these
crashes do not occur; the revealed failures highlight a limited ability
of Apollo’s planning and control modules to generalize to such
corner cases.

4.7 Threats to Validity

Internal Validity. All variants of Foresee, SelfOracle, and ran-
dom were evaluated under identical experimental conditions and
the same test set. The main threat concerns the correctness of our
test script implementations, whichwe verified thoroughly.We could
not train SelfOracle using the same dataset as InterFuser, nor
use pre-trained models due to simulator differences. We mitigated
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this by training the VAE following standard guidelines [49, 50], and
our version of SelfOracle performs competitively.

Regarding the ADS, which could bias results if unsuitable for
driving, we used two top-ranking, publicly available models from
the CARLA leaderboard. As for the simulation platform, we adopted
CARLA, widely used in recent failure prediction research [56].

One threat relates to the quality of input test cases, specifically,
whether scenarios already include near-misses, making failures
easier to induce. To assess this, we analyzed whether failures found
by Foresee stemmed from obviously risky inputs. As discussed in
Section 4.6, decision tree analyses show that failures arise from sub-
tle, multi-feature conditions rather than extreme TTC, distance, or
speed values, suggesting Foresee reveals non-trivial vulnerabilities.

Another concern involves the realism of scenario mutations. Un-
like global mutation tools like DriveFuzz [28], our method applies
minimal, targeted modifications to existing simulations, preserving
NPC count and adjusting only those closest to the ego vehicle. We
use conservative perturbations, such as slight steering changes or
vehicle swaps within the same class, aligned with localization error
thresholds [42] and established targeted testing techniques [7]. Lim-
ited repetition of our experiments may affect the robustness of our
results, as simulation-based testing is computationally expensive.
External Validity. The limited number of self-driving systems in
our evaluation constitutes a threat to the generalizability of our
results to other ADS. Results may not generalize when considering
other simulation platforms or ADSs.

5 Related Work

Test Generation for Autonomous Driving. The majority of test
generation techniques employ search-based techniques for DNN-
based ADS testing [1, 4, 5, 27, 36, 41, 43, 54, 62]. In this domain, test
cases can be either individual driving scenes images, or road topolo-
gies that are rendered using a 3D driving simulator. Abdessalem
et al. [1, 4, 5] combine genetic algorithms and machine learning to
test a pedestrian detection system. Mullins et al. [38] use Gauss-
ian processes to drive the search-based test generation, whereas
Gambi et al. [15] propose search-based test generation for ADS
based on procedural content generation. DriveFuzz uses the phys-
ical states of the vehicle and oracles based on real-world traffic
rules to guide the fuzzer [28]. AutoFuzz [63] focuses on fuzzing
the test scenario specification. Before fuzzing, it uses a seed se-
lection mechanism based on a binary classifier that selects likely
traffic-violating seeds. AV-Fuzzer [31] uses a genetic algorithm that
is informed by the positioning of globally monitored NPCs in each
scenario in the driving environment. Cheng et al. [9] propose Be-
haviorMiner, an unsupervised model that extracts the temporal
features and performs clustering to group behaviors. Neelofar and
Aleti [39] propose characterizing critical scenarios for ADS using a
combination of static and dynamic features. SimADFuzz [60] uses
distance-guided mutation strategies to enhance the probability of
interactions among vehicles in generated scenarios. Koren et al. [30]
and Corso et al. [12] use Monte Carlo tree search and deep rein-
forcement learning to find collision scenarios. Similarly, GARL [32]
uses reinforcement learning to detect violations in marker-based
autonomous landing systems.

Test generators are designed to maximize the number of failures
and consider whole test cases. While the exploration is guided
towards critical regions, the search budget is consumed by running
test cases that do not result in failing conditions. Our approach
forecasts potential ego vehicle states to predict infractions with
NPCs and focuses on local segments within test cases.
Focused Test Generation for Autonomous Driving. Although
focused test case generation has been a subject of extensive study
and application in the context of software testing, its application to
ADS is a new field that has been underexplored. To the best of our
knowledge, only two approaches have been proposed. DeepAtash-
LR by Zohdinasab et al. [65] improves targeted test generation by
using a surrogate model to avoid executing whole test cases. In
contrast, we focus on reusing simulation segments. TM-Fuzzer [33]
dynamically generates NPCs in the neighborhood of the ego vehicle
to increase the likelihood of failures. Differently, we keep the num-
ber of NPCs the same and introduce only a minimal modification
by changing their type, which impacts their kinematic behavior.
Also, our framework promotes the reuse of simulation resources,
which is not the case with any of the existing approaches.
Anomaly Detection in Autonomous Driving.We already dis-
cussed SelfOracle [50], for which we performed an explicit em-
pirical comparison in this work. Similarly, DeepGuard [20] uses
the reconstruction error by VAEs to prevent collisions of vehicles
with the roadside. ThirdEye [46] uses the attention maps from the
explainable AI domain to predict misbehaviors of self-driving cars.
Other works [48, 49] use continual learning to minimize the false
positives of a black-box failure predictor, whereas other researchers
use uncertainty quantification [16] or probabilistic time-series [45].

Our approach differs from the aforementioned approaches be-
cause it uses a risky score of the system synthesized from a fore-
casting mechanism of the ego vehicle kinetics.

6 Conclusions

Simulation-based testing is highly useful in autonomous vehicle
testing, but the cost of revealing faults relative to the time to run
simulations is very high. We propose Foresee, an approach to opti-
mize simulation-based testing by reusing segments of simulations
that produce near-failing situations. Our approach uses a custom
misbehavior forecaster to detect near misses and fuzz the state of
the simulation locally to produce failures quickly. Experimental
results show that failure-free scenarios embed many near-failing
situations that Foresee can accurately detect, and that many of
these cases result in failures when minimal perturbations are intro-
duced. Foresee provides initial yet strong evidence that guiding
fuzzing with misbehavior forecasting is a promising approach to
uncovering hidden failures in ADS. In the future, we plan to eval-
uate additional forecasting methods based on multi-horizon and
multi-variate time series.
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