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Abstract—Regression Testing is an important quality assurance
practice widely adopted today. Optimizing regression testing is
important. Test parallelization has the potential to leverage the
power of multi-core architectures to accelerate regression testing.
Unfortunately, it is not possible to directly use parallelization
options available in build systems and testing frameworks with-
out introducing test flakiness. Tests can fail because of data
races or broken test dependencies. Although it is possible to
safely circumvent those problems with the assistance of an
automated tool to collect test dependencies (e.g., PRADET), the
cost of that solution is prohibitive, defeating the purpose of
test parallelization. This paper proposes PASTE an approach
to automatically parallelize the execution of test suites. PASTE
alternates parallel and sequential execution of test cases and test
classes to circumvent provoked test failures. PASTE does not
provide the safety guarantee that flakiness will not be manifested,
but our results indicate that the strategy is sufficient to avoid
them. We evaluated PASTE on 25 projects mined from GitHub
using an objective selection criteria. Results show that (i) PASTE
could circumvent flakiness introduced with parallelization in
all projects that manifested them and (ii) 52% of the projects
benefited from test-parallelization with a median speedup of 1.59x
(best: 2.28x, average: 1.47x, worst: 0.93x).

Index Terms—Regression testing, test flakiness, parallelization.

I. INTRODUCTION

Regression testing is the task of checking if functionalities
implemented in the software remain intact during software
evolution. Regression testing is widely adopted in industry [1]–
[4]. Large codebases, large test suites, and high frequency
of code changes make regression testing expensive. At large
organizations, running regression suites often demands special
infrastructure. For example, Google’s TAP service [5] makes
150 million test runs every day. To support such a high
workload, the TAP service runs a batch of tests every 45m
–each period is called an epoch–, selecting which tests need
to be executed in every epoch based on a lightweight change-
impact analysis. Although the scale of the problem at Google
is certainly higher compared to that of a typical IT company,
the problem affects the software industry in general [6], [7].

Different approaches have been proposed in research to
address the cost of regression testing [8]. Regression Test
Selection (RTS), for example, uses an objective criterion to
determine which tests need to be executed in every regression
cycle. For example, Ekstazi [6], [9] tracks file dependencies to
determine which tests need to be executed upon file changes.

Test parallelization [7], [10] is another approach to reduce
cost of regression testing. It is complementary to traditional

approaches to optimize regression testing, including test se-
lection, prioritization, reduction [8]. Test parallelization lever-
ages available machine resources to speed up the execution
of tests. Although most build systems (e.g., Maven [11])
and test frameworks (e.g., JUnit [12]) provide features to
accelerate the execution of tests (see Section II-A), using
those features “out of the box” rarely works. Unintentional
interference across tests, such as broken test dependencies
and data races, often occur when developers do not prepare
the code to take into account the fact that tests will execute
concurrently. Listing 1 shows an example, later detailed on
Section II-B, where the test randomServer fails when exe-
cuted before the test randomServerFromMany. In that case,
the failures occurs because because the test randomServer
does not properly configure the EasyMock library before using
mock objects. The test randomServerFromMany uses the
EasyMock API properly. Consequently, the failure is only
observed when the test randomServer is executed first. In
this example, the test randomServer depends on the test
randomServerFromMany. Test dependency is a problem for
parallelization as test methods can, in principle, execute in any
order. Parallel execution of tests can produce data races for the
same reason: shared data reachable from the tests.

One way to address this problem –as to enable automated
parallelization– is to forbid tests to share state [13], i.e., to
detect and report test dependencies during evolution and to
adopt strict policies on the use of static fields (to prevent
data races). One issue with that approach is that it imposes
a burden on developers. For instance, certain design patterns,
such as Singleton [14], are implemented with static fields.
Furthermore, developers may not feel the urgency to repair
test cases if these test cases pass in regular sequential runs.

This paper proposes PASTE (PArallel-Sequential Test Exe-
cution), a lightweight approach to automate parallel execution
of tests. PASTE builds on the observation that broken test
dependencies that are manifested in parallel runs involve
test cases from the same test class. PASTE leverages that
observation to reinstate dependencies by running the tests from
the same class in the same order. PASTE is organized as a
pipeline of three stages. In the first stage, PASTE runs tests
in parallel using any parallel configuration option provided by
the build system. In the second stage, PASTE runs the test
cases that failed at the first stage sequentially with the goal of
circumventing failures due to data races. Finally, in the third
stage, PASTE runs the test classes with any test that failed
at the second stage sequentially. The intuition is that the test
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failures at the second stage are due to broken test dependencies
manifested within the same test class. On the hypothesis that
broken test dependencies involve tests declared in the same
class that strategy would address the failures provoked by test
parallelization that were not addressed on the second stage.

We evaluated PASTE on 25 projects mined from GitHub.
Results show that (1) PASTE could circumvent flakiness
introduced with parallelization in all projects that manifested
them and that (2) the best parallel execution mode of PASTE
was faster than the sequential execution mode by a factor
of 1.59x. These results indicate that (i) our proposal of
alternating parallel and sequential execution of test cases
and classes is effective and that (ii) the overhead incurred
from executing tests with PASTE is acceptable. To sum up,
this paper provides initial yet strong evidence that PASTE
can be used to assist developers in using parallel options
of build systems “out of the box”. The artefacts produced
in our experiments are publicly available at the following
URL: https://github.com/STAR-RG/paste.

The rest of this paper is organized as follows. Section II
provide technical background for the following sections. Sec-
tion III presents PASTE. Sections IV–VII report on our
evaluation and Section VIII discusses implications. Finally,
sections IX and X discuss related work and conclusions.

II. BACKGROUND

A. Test Parallelization

Parallelism for test execution can be obtained at various
levels. For instance, test parallelization can be obtained within
a single machine or across several machines (e.g., using
virtual machines from a cloud service). This paper focuses
on parallelism within a single machine, where computation
can be offloaded at different CPUs within that machine and at
different threads within each CPU. This form of parallelism
is enabled through build systems and testing frameworks. In
the following, we elaborate relevant features of these tools for
parallelization. We focused on Java, Maven, and JUnit but the
discussion can be generalized to other language and tools.

1) Testing Frameworks: Test frameworks are a piece of
software to facilitate the construction of automated tests. A va-
riety of testing frameworks support parallel test execution (e.g.,
JUnit [12], TestNG [15], and NUnit [16]) as to benefit from
the available processing power in the machine that executes
the tests. The list below shows the choices provided by JUnit
for test parallelization:

• sequential. No parallelism is involved.
• methods. This configuration corresponds to running test

classes sequentially, but running test methods from those
classes concurrently.

• classes. This configuration corresponds to running test
classes concurrently, but running test methods from those
classes sequentially.

• classesMethods. This configuration corresponds to
running test classes and test methods concurrently.

It is worth noting that these options are restricted to one Java
Virtual Machine (JVM), the JVM that executes the tests. No-
tice that an important aspect in deciding which configuration
to use (or in designing new test suites) is the possibility of race
conditions on shared data during execution. That can occur,
for example, through state that is reachable from statically-
declared variables in the program or through variables declared
within the scope of the test class or even through resources
available on the file system and the network [17].

2) Build Systems: Forking OS processes to run test jobs
is the basic mechanism of build systems to obtain parallelism
at the machine space. For Java-based build systems, such as
Maven and Ant, this amounts to spawning JVMs on a host
CPU to handle test jobs and then aggregating test results
when these jobs finish. Forking can only be combined with
configuration methods (see Section II-A1) as Maven made
the design choice to only accept one test class at a time per
forked process. As such, parallelizing the execution of test
classes within a forked JVM process would not make sense as
there is only one test class to be executed per process. Maven
offers an option to reuse JVMs (reuseForks) that can be used
to attenuate the potentially high cost of spawning new JVMs,
but that increases the chances of tests accessing polluted state
created by other test runs [18], [19].

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artefactId>maven-surefire-plugin</artefactId>
<configuration>

<forkCount>1C</forkCount>
<reuseForks>true</reuseForks>
<parallel>methods</parallel>
<threadCount>5</threadCount>

</configuration>
</plugin>

Figure 1: Example Maven configuration file.

Figure 1 shows a fragment of a Maven configuration file,
known as pom.xml, highlighting options to run tests in paral-
lel. Maven implements this feature through its Surefire JUnit
test plugin [20]. With this configuration, Maven forks one
JVM per core (forkCount parameter) and uses five threads
(threadCount parameter) to run test methods (parallel
parameter) within each forked JVM. Recall that only one test
class runs at a time per JVM. Maven reuses created JVMs
on subsequent forks when execution of a test class terminates
(reuseFork parameter).

B. Test Dependencies

A test is said to depend on another test when it reads state
previously written by another test. These dependencies can
manifest through shared state [22], reachable from the fields
declared in the test class or from the static fields declared in
classes of the application.

Test case dependencies are undesirable. In a regular (non-
parallel) execution, for example, they can result in inability to
run tests in isolation [10], [13], a feature that is often important
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1 public class MasterReplicationCoordinatorTest {
2 static AccumuloConfiguration config = DefaultConfiguration.getInstance();
3
4 @Test
5 public void randomServer() {
6 Master master = EasyMock.createMock(Master.class);
7 ZooReader reader = EasyMock.createMock(ZooReader.class);
8 ServerContext context = EasyMock.createMock(ServerContext.class);
9 EasyMock.expect(context.getConfiguration()).andReturn(config).anyTimes();

10 EasyMock.expect(master.getContext()).andReturn(context);
11 EasyMock.expect(master.getInstanceID()).andReturn("1234");
12 EasyMock.replay(master, reader);
13
14 MasterReplicationCoordinator coordinator = new MasterReplicationCoordinator(master, reader);
15 TServerInstance inst1 = new TServerInstance(HostAndPort.fromParts("host1", 1234), "session");
16
17 assertEquals(inst1, coordinator.getRandomTServer(Collections.singleton(inst1), 0));
18 }
19 ...
20 @Test
21 public void randomServerFromMany() {
22 Master master = EasyMock.createMock(Master.class);
23 ZooReader reader = EasyMock.createMock(ZooReader.class);
24 ServerContext context = EasyMock.createMock(ServerContext.class);
25 EasyMock.expect(context.getConfiguration()).andReturn(config).anyTimes();
26 EasyMock.expect(context.getInstanceID()).andReturn("1234").anyTimes();
27 EasyMock.expect(context.getZooReaderWriter()).andReturn(null).anyTimes();
28 EasyMock.expect(master.getInstanceID()).andReturn("1234").anyTimes();
29 EasyMock.expect(master.getContext()).andReturn(context).anyTimes();
30 EasyMock.replay(master, context, reader);
31
32 MasterReplicationCoordinator coordinator = new MasterReplicationCoordinator(master, reader);
33 EasyMock.verify(master, reader);
34 TreeSet<TServerInstance> instances = new TreeSet<>();
35 TServerInstance inst1 = new TServerInstance(HostAndPort.fromParts("host1", 1234), "session");
36 instances.add(inst1);
37 TServerInstance inst2 = new TServerInstance(HostAndPort.fromParts("host2", 1234), "session");
38 instances.add(inst2);
39
40 assertEquals(inst1, coordinator.getRandomTServer(instances, 0));
41 assertEquals(inst2, coordinator.getRandomTServer(instances, 1));
42 }
43 }

Listing 1: Test randomServer depends on test randomSeverFromMany [21].

when the developer needs to debug code from a given test case.
In a parallel execution, the infrastructure (i.e., build system
and test framework) runs the tests concurrently. As result,
tests can fail either (1) because of broken test dependencies
or (2) because of data races. In both cases, the shared state
reachable from the tests triggers these problems.

1) Example: Listing 1 shows a code snippet from the
test class MasterReplicationCoordinatorTest from the
Apache project accumulo [23], a distributed data store to sup-
port key-value information retrieval. Accumulo stores the data
in multiple tables using a cluster of server instances. The class
MasterReplicationCoordinator is responsible for coor-
dinating server replicas. The method getRandomTServer, for
instance, returns a random server instance from the cluster.
The tests randomServer and randomServerFromMany are
similar; they create the coordinator object and check if method
getRandomTServer answers with a valid server instance. The
difference between these tests is that randomServer tests
the behavior of the class MasterReplicationCoordinator
with one server instance whereas randomServerFromMany

tests the behavior with two server instances.
The test randomServer fails when executed in isolation.

That happens because randomServer depends on the test
randomServerFromMany. In a scenario where tests are ex-
ecuted in parallel, randomServer may also fail because the

test infrastructure can execute test methods in any order. The
problem in this example is that the test randomServer does
not use the EasyMock Mocking library [24] properly whereas
the test randomServerFromMany does the proper setup.
When randomServerFromMany executes first the problem is
not observed as the setup of the library persists across tests.

More in detail, developers often define behavior of mock
objects in Mocking libraries through expectations, such as
the ones declared on Listing 1 using the method expect.
For these expectations to have an effect, the developer needs
to call the method replay after defining the expectations,
passing the mock objects as argument. For example, note that
the mock objects master, context, and reader, created at
lines 22–24, are passed as argument to the call to method
replay at line 30. In contrast, the mock object referred by
variable context, declared and initialized at line 8, is not
passed as argument to the method replay at line 12. Because
of this mistake, any call made by the test during execu-
tion to the method ServerContext.getConfiguration()

returns null instead of a reference to the object config,
as the developer would certainly hope (as per line 9).
The code of the application does not expect that method
to ever return null1 and attempts to dereference the re-

1In fact, this is only possible using mocks to bypass the original behavior.
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turned (null) reference, raising a NullPointerException

(NPE). That exception is raised in the execution of the
constructor MasterReplicationCoordinator at line 14.
When the test randomServerFromMany is executed first,
the setup of the mocks is properly done and the
mock library returns a non-null object upon calls to
ServerContext.getConfiguration(). That object is
stored in a static field declared in the application code,
persisting across test executions. That same object is returned
instead of null and the NPE exception is no longer triggered.

III. PASTE

This section presents PASTE (PArallel-Sequential Test
Execution), a lightweight approach to introduce test paral-
lelization in Java projects. PASTE builds on the observa-
tion that broken test dependencies that are manifested in
parallel runs involve test cases from the same test class.
Section II-B showed a representative example of that sce-
nario. The failure manifested with the parallel execution
of project accumulo involves a test declared in the class
MasterReplicationCoordinatorTest that is dependent
on another test declared in the same class. Intuitively, that
occurs because developers tend to write related test cases in
the same test classes. PASTE leverages that observation to
reinstate dependencies by running the tests from the same class
in the same order, if needed. PASTE makes the assumption
that a relatively low number of test failures are manifested in
a parallel execution of the test suite. Intuitively, the higher
the number of test failures is –relative to the size of the
test suite– the lower the chances of observing speedups with
parallelization.

parallel execution of T

sequential execution of test cases

T : all test cases

failed test cases

sequential execution of test classes

stage 1

TR: test case reports

failed test classes

stage 2

stage 3

PASTE

Figure 2: PASTE.

PASTE is organized as a pipeline of three stages. Figure 2
shows the pipeline, with each stage represented as a gray
rectangle. PASTE takes as input the full set of test cases T and
reports as output the outcomes of the test runs TR. All stages
of the pipeline consume a set of test cases on input and report
a set of test cases on output. In the first stage, PASTE runs
the test suite in a given parallel mode of execution provided
by the build system. In Maven, that translates to selecting
an option for the parameter -Dparallel (e.g., classes,
methods, etc.). If all tests pass in this stage, execution stops.

In the second stage, PASTE executes sequentially the test
cases that failed on the first stage. Intuitively, a test that failed
on the first stage because of data races and is not dependent
on another test case should pass in this stage. If all tests pass
in this stage, execution stops. In the third stage, PASTE
executes sequentially the test classes from the tests that failed
on the second stage. The failures that reached this point are
due to broken test dependencies. As previously mentioned, the
hypothesis is that test dependencies involve test cases declared
in the same test class. As such, failed test cases will run
in the same order —within a given test class— they ran in
the original sequential setup. Executing the entire test class
instead of individual tests reinstates the test dependencies at
the expense of duplicate effort. More precisely, at this stage,
PASTE executes test classes in isolation to workaround test
failures due to broken test dependencies. At last, PASTE
reports a list of test failures on output.

Tool availability and replication support

Our tool was implemented on top of bash and traditional
UNIX utilities like grep, sed, awk, etc. It currently supports
Maven projects. The artefacts are made publicly available at
the following URL: https://github.com/STAR-RG/paste.

IV. METHOD AND OBJECTS OF ANALYSIS

This section details the method and objects we used to
conduct our experiments.

A. Environment

We performed our experiments on a machine powered by a
tenth-generation Intel Core i5-1035G1 CPU @ 1.00GHz (base
frequency), 8 CPUs (4 cores, with 2 threads per core), 8 GB
RAM, and with an SSD storage of 512 GB. Software used
were Linux kernel version 5.4.0-42-generic, and OpenJDK

1.8.0 282 for Java. We implemented PASTE on top of GNU
bash 5.0.17, and maven 3.6.3.

B. GitHub Projects

To build the dataset for our empirical study, we mined 25
Java projects that use Maven and have at least 200 stars and
300 tests. We focused on Apache projects written in Java [25],
but found only 21 projects satisfying the criteria specified.
The Apache foundation is recognized for their diligence in
maintaining projects. To complete the list of 25 projects, we
randomly selected 4 projects from GitHub that satisfied these
requirements. Table I shows the projects we selected. The
suffix “(A)” indicates an Apache project. Column “#” shows
the id of the project, column “Name” shows the name of the
project, column “# Stars” shows the number of stars of the
project on GitHub, column “# Tests” shows the number of
tests of that projects, and column SHA shows the first 7 digits
of the hash of the commit we used to analyze that project.

4



Table I: Open-source Java projects. The suffix “(A)” indicates
that the project is maintained by Apache.

# Name # Stars # Tests SHA

1 accumulo(A) 861 514 76247b1
2 atlas(A) 839 1422 acb9880
3 avro(A) 1807 10446 5bd7cfe
4 biojava 438 811 4d1cf58
5 cayenne(A) 250 2084 54cb1f9
6 chronicle-queue 2291 328 8754ad3
7 commons-collections(A) 475 16923 3aae82c
8 commons-io(A) 767 1840 c1ee777
9 datasketches-java(A) 706 1490 dab9542

10 dubbo(A) 34954 3519 b5c81d8
11 httpcomponents-client(A) 1040 1865 bde58d6
12 iotdb(A) 1255 422 6f7eac8
13 kylin(A) 3015 1057 d6073d2
14 maven(A) 2490 1053 276c6a8
15 mina(A) 776 371 daf2a33
16 mina-sshd(A) 394 1790 a0bbdf9
17 opennlp(A) 1024 791 7286f9c
18 pdfbox(A) 1403 1849 9daeaf6
19 ranger(A) 489 552 58b51a3
20 ratis(A) 460 444 0c9913f
21 rocketmq(A) 13740 372 3ae2517
22 shiro(A) 3419 856 a85dfcd
23 strata 603 16277 050745d
24 soul 3666 1081 a99c9fc
25 wicket(A) 551 2699 34f78c8

Σ - 70856 -

C. No Failures

To make sure the failures we observe during the execution of
PASTE are result of parallelization as opposed to manifesta-
tions of bugs in the application or manifestations of flaky tests,
we used the most recent release of the application (to avoid
deterministic failures because of code “in flux”) and reran each
test suite for 10 times to identify and eliminate flaky tests (to
avoid non-deterministic failures). With this setup, we wanted
to ascertain that all tests from the projects we selected pass
when executed in regular (i.e., non-parallel) mode.

D. Parallel Configurations

We focused on parallel configurations provided by the
test framework as opposed to configurations provided by the
build system. As such, we fixed parameters the following
parallel configuration parameters provided by the build system:
forkCount=1C, reuseForks=true, and threadCount=7.
Section II-A1 describes the configuration parameters of the test
framework in detail. Recall that the test framework provides
features to explore parallelism within the JVM. The rationale
for our choice is that JVM parallelism is capable of manifest-
ing the flakiness issues we discussed and is more fundamental
compared to forking. For the sake of completeness, we focused
on these configurations, but there is no fundamental reason
why PASTE cannot be used with forking. Conceptually,
forking reduces contention and can explore more effectively
the cores of the machine as each JVM runs in a separate
process. However, there is non-negligible cost in spawning
different JVMs for execution [19].

V. RESEARCH QUESTIONS

We pose the following research questions to evaluate
PASTE. The first three research questions address the feasi-

bility of the approach whereas the last two questions address
its effectiveness.

A. Feasibility

RQ1: Is it feasible to use parallelization options provided
by the build system “out of the box” to run test suites?
PASTE would be unnecessary if parallel and sequential runs
consistently produce the same outputs.

RQ2: Is it practical to use a test dependency analyzer
to partition test sets as to enable sound parallel execution?
Simply rerunning the tests that failed during parallel execution
in isolation is not an acceptable approach to circumvent
failures provoked by parallel test runs. Test dependencies could
be broken and tests would fail for that reason [13]. This
research question evaluates the plausibility of an alternative
strategy to parallelize test runs: (1) Run tests in parallel (in any
execution mode), (2) Identify failed tests, (3) Topologically
sort the dependency subgraph associated with the transitive
closure of test dependencies from failed tests,2 and (4) Rerun
tests sequentially, according to that ordering. In contrast to
PASTE, that strategy is sound. The goal of this question is to
assess how computationally efficient is that approach.

B. Effectiveness

RQ3: How reliable is PASTE? This question evaluates
whether one could reliably run test suites in parallel with
PASTE. Conceptually, if relevant test dependencies are man-
ifested across test classes then there should be persistent test
failures that PASTE would be unable to circumvent. This
research question evaluates whether such test dependencies
arise during test execution. The goal is to demonstrate that
the execution of a test suite with PASTE produces the same
results compared with a sequential execution.

RQ4: What are the speedups obtained with PASTE?
Finally, we investigate what are the speedups obtained with
the various parallelization strategies used by PASTE. The ra-
tionale for the question is to show that the overhead introduced
with PASTE’s infrastructure is not unacceptably high to defeat
the purpose of parallel executions.

VI. RESULTS

A. Answering RQ1: Is it feasible to use parallelization options
provided by the build system “out of the box” to run test
suites?

The rationale for this question is that PASTE would be
unnecessary if developers could always find, for a given
project, a parallel configuration whose test runs produce the
same outputs as sequential runs. Given that we knew a priori
that all tests in the sequential execution pass, consistency
between parallel and sequential runs can be determined by
verifying that all tests pass in parallel executions. To answer
this question, we ran the test suite of each of the 25 projects
for 5 times on each parallel configuration we considered in
this study (Section IV-D). Column “#1” from Table II shows

2We used PRADET [22], [26] to compute test dependencies.
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Table II: Number of failures after every stage of the pipeline. Columns “classes”, “methods”, and “classesMethods”
show the options used for the parameter -Dparallel at stage #1. Stage #2 runs failing test cases sequentially whereas stage
#3 runs test classes associated with failing tests cases sequentially. A dash indicates that a stage was skipped.

project # tests classes methods classesMethods
#1 #2 #3 #1 #2 #3 #1 #2 #3

accumulo 514 0.0 – – 6.0 1.4 0.0 6.8 2.4 0.0
atlas 1422 10.4 0.0 – 147.2 6.0 0.0 0.0 – –
avro 10446 0.0 – – 0.0 – – 0.0 – –
biojava 811 2.6 0.0 – 8.6 1.0 0.0 17.6 0.0 –
cayenne 2084 8.2 0.0 – 22.8 0.0 – 26.4 0.0 –
chronicle-queue 328 3.2 0.0 – 74.4 0.0 – 65.4 0.0 –
commons-collections 16923 0.0 – – 0.0 – – 0.0 – –
commons-io 1840 0.0 – – 0.0 – – 0.0 – –
datasketches-java 1490 0.0 – – 10.2 0.0 – 0.0 – –
dubbo 3519 1.6 0.0 – 5.4 0.0 – 0.8 0.0 –
httpcomponents-client 1865 0.2 0.0 – 1.4 0.0 – 5.4 0.0 –
iotdb 422 30.6 0.0 – TO – – TO – –
kylin 1057 321.2 0.0 – 401.0 0.0 – 401.6 0.0 –
maven 1053 0.0 – – 0.0 – – 0.0 – –
mina 371 0.0 – – 1.8 0.0 – 0.0 – –
mina-sshd 1790 1.4 0.0 – 1.4 0.0 – 1.6 0.0 –
opennlp 791 0.0 – – 0.0 – – 0.0 – –
pdfbox 1849 0.0 – – 0.0 – – 0.0 – –
ranger 552 1.6 0.0 – 48.4 0.0 – 47.0 0.0 –
ratis 444 16.2 0.0 – 107.4 0.4 0.0 106.8 0.4 0.0
rocketmq 372 5.4 0.0 – 16.0 0.0 – 18.4 0.0 –
shiro 856 0.0 – – 0.0 – – 0.0 – –
strata 16277 0.0 – – 0.0 – – 0.0 – –
soul 1081 0.0 – – 5.6 0.0 – 6.6 0.0 –
wicket 2699 0.0 – – 22.0 0.0 – 26.8 0.0 –

Σ 402.6 0.0 – 879.6 8.8 0.0 731.2 2.8 0.0

results. This column shows the average number of test failures
observed across runs of the corresponding test suite of a
project in a given parallel execution configuration. We found
that in 11 of the 25 projects (=44%) all three configurations
produce failures. We highlighted in gray color the name of
these projects on the table. Results suggest that it is not the
case that there is one parallel configuration for every project
that would make all tests pass. It is worth noting that the
configuration classes (Section II-A) is the one that could
execute the test suite with no failures more often (row Σ,
column “#1”). Recall that the configuration classes, in
contrast to the other two configurations, runs the test methods
from each test class sequentially. To sum up:

Summary: In 44% of the projects we analyzed, no
parallel configurations enabled a clean execution, i.e.
an execution without test failures. This result shows

that searching for the parallel configuration that
makes test outputs consistent with those of a
sequential execution is infeasible in general.

B. Answering RQ2: Is it practical to use a test dependency
analyzer to partition test sets as to enable sound parallel
execution?

The previous research question showed that parallel execu-
tion of tests often do not work “out of the box”. Tests can
be executed in different orderings breaking test dependencies
and test can access shared data that has not been protected

for concurrent access. Both circumstances can result in test
failures during parallel executions.

Conceptually, one can circumvent failures due to broken test
dependencies using the following approach: (1) Run tests in
parallel, (2) Identify failed tests, and (3) Topologically sort the
dependency subgraph associated with the transitive closure of
test dependencies from the failed tests, and (4) Rerun tests
sequentially, according to that ordering. If that alternative is
acceptable, it would be unnecessary to run PASTE. That
approach is sound, in contrast to PASTE, which cannot
provide the guarantee that the test output produced will be
identical with those obtained in sequential runs. We imple-
mented that strategy to empirically confirm soundness and
it was indeed able to circumvent failures. For that, we used
PRADET, which is the state-of-the-art technique to compute
test dependencies [22], [26].

It remained to evaluate how efficient the approach de-
scribed above was. PRADET computes dependencies with a
lightweight dynamic analysis. Unfortunately, we found that the
cost of PRADET to support parallelization is prohibitive. The
analysis of PRADET consists of three stages: (1) Run tests
sequentially to obtain the original order of execution of tests,
(2) Run a dynamic dataflow analysis to collect data dependen-
cies from tests, (3) Run an iterative dependency refinement
algorithm, which filters out all the non-problematic [22] data
dependencies. A problematic test dependency is one which,
if broken, toggles the verdict of the dependent test case. All
other dependencies are non-problematic.

Table III shows the running times of PRADET broken
down by each one of PRADET’s steps. Step 1 is a proxy
for the cost of a sequential execution. Assuming that only
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Table III: PRADET’s execution time (in seconds). The symbol
“E” denotes an error.

project #Deps. Step 1 Step 2 Step 3

accumulo 5512 246 66 1904
atlas 0 190 3138 1358
avro (E) - - - -
biojava 184 574 550 7896
chronicle-queue 251 127 134 165
commons-collections 2 74 55 744
commons-io 0 194 3 22
cayenne 1092 134 161 2709
datasketches-java (E) - - - -
dubbo 0 85 53 92
httpcomponents-client 465 73 26 249
iotdb 0 195 61 40
kylin (E) - - - -
maven 0 33 110 182
mina 90 72 66 80
mina-sshd 1805 2052 477 1562
opennlp 41 72 61 1563
pdfbox 0 166 29 114
ranger 1529 411 331 10461
ratis 158 1750 1482 876
rocketmq 110 175 52 645
shiro 16 58 53 105
soul 32 65 34 222
strata 0 285 30 327
wicket 17 183 83 381

steps 2 and 3 need to re-executed on every test run to
obtain the updated set of test dependencies,3 the sum of
costs of these two steps far exceeds the cost of Step 1,
which fairly approximates the cost of a sequential execution
of the test suite. To sum up, the smaller observed runtime
of an execution in PRADET is higher than the execution
time of a sequential test suite execution, rendering the sound
approach described above to run tests impractical. Consider
projects chronicle-queue and commons-collection, for
illustration. chronicle-queue is a project manifesting a high
number of test dependencies (251) through a low number of
test cases (338), and commons-collection is a project with
a very low number of test dependencies (2) through a very
high number of test cases (16,923). The cost of running Step
3 alone is higher than the cost of running Step 1. It is important
to note that we were unable to run PRADET on projects
avro, datasketches-java, and kylin. The suffix “(E)” on
the project name indicates that PRADET generated an error
message and stopped execution before reporting dependencies.

Summary: The cost of running PRADET, which is
the state-of-the-art tool to compute test dependencies,
is substantially higher than the cost of running tests

sequentially. It is therefore not practical to use
PRADET to support test parallelization.

C. Answering RQ3: How reliable is PASTE?

This question evaluates whether it is possible to run a test
suite with PASTE and consistently obtain the same results of
a sequential test execution.

3This would be possible when no new test cases are added or removed.

Table II shows the number of failures observed at each
given stage of PASTE averaged across 5 runs. A “–” on
the table indicates that PASTE was interrupted prior to
that stage as some previous stage detected no failures. For
illustration, let us consider the case where PASTE is exe-
cuted with the configuration methods on project atlas. A
total of 147.2 failures, on average, are observed at the end
of the first stage. Most of these failures occur because of
the contention created by PASTE to execute multiple test
methods concurrently, leading to data races. To address that,
PASTE sequentially executes the tests that failed on the
first stage. At the end of the second stage, 6 failures are
still observed, on average. These failures are associated to
the six tests that consistently fail in all of the 5 runs. The
test searchByALLTagAndIndexSysFiltersToTestLimit

is among these six cases. We found that that test fails
when it is executed before the test searchByALLTag.
Listing 2 shows these two test cases. Note that the
final statement of the test searchByALLTag updates
the variable totalClassifiedEntities and that that
variable is later read on the other dependent test.
There is a read-write test order dependency between
these tests manifested through this test field. When
searchByALLTagAndIndexSysFiltersToTestLimit exe-
cutes before searchByALLTag, the call to the method
setLimit (line 20) uses -2 as argument, which is wrong. As
result, the object params will store the incorrect value and
the assertion at line 25 fails.

1 public class ClassificationSearchProcessorTest ... {
2 private AtlasGraph graph;
3 private int totalClassifiedEntities = 0; ...
4
5 @Test(priority = -1)
6 public void searchByALLTag() throws AtlasBaseException {
7 ...
8 params.setLimit(20);
9 SearchContext context =

10 new SearchContext(params, graph, ...);
11 ClassificationSearchProcessor processor = new

ClassificationSearchProcessor(context);
12 List<AtlasVertex> vertices = processor.execute();
13 Assert.assertTrue(CollectionUtils.isNotEmpty(vertices));
14 totalClassifiedEntities = vertices.size();
15 } ...
16
17 @Test
18 public void searchByALLTagAndIndexSysFiltersToTestLimit()

throws AtlasBaseException {
19 ...
20 params.setLimit(totalClassifiedEntities - 2);
21 SearchContext context =
22 new SearchContext(params, graph, ...);
23 ClassificationSearchProcessor processor = new

ClassificationSearchProcessor(context);
24 List<AtlasVertex> vertices = processor.execute();
25 Assert.assertTrue(CollectionUtils.isNotEmpty(vertices));
26 }...}

Listing 2: Test Order Dependency on Atlas [27].

It is worth noting that developers used the parameter
priority of annotation @Test to make it explicit that the
test searchByALLTag should execute before any other test
declared at the same class. PASTE circumvented the provoked
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breakage of a test order dependency in its final stage by
respecting the order of tests declared in the test class.

Note that the number of failures observed on the first
stage with configurations methods and classesMethods

are much higher (879.6 and 731.2 respectively) compared to
the number of first-stage failures observed with configuration
classes (402.6). That occurs because configuration classes

is not as aggressive in using the CPU resources as the other
configurations. Overall, results indicate that executing indi-
vidual test cases sequentially significantly reduces the number
of observed failures dues to data races (columns “#1” and
“#2”, row Σ). Also note that executing test classes sequentially
is effective to circumvent failures caused by broken test
dependencies (columns “#2” and “#3”, row Σ). To sum up:

Summary: The strategies adopted by PASTE of
executing test cases and test classes sequentially are

effective to circumvent the test flakiness provoked by
test parallelization. Considering all projects and
configurations, there were no cases of provoked

failure that “survived” the third stage of PASTE.

D. Answering RQ4: What are the speedups obtained with
PASTE?

Finally, this question investigates the speedups obtained
with the various parallelization strategies used by PASTE. It is
worth noting that PASTE does not implement parallelization
features, such as forking JVMs, spawning threads, or schedul-
ing the execution of test classes and test cases to each of these
computation units. Those features are already provided by the
build system and testing frameworks. Instead, the focus of
PASTE is to facilitate the use of those features in projects
that were not prepared to be executed in parallel. It is also
worth noting that the speedups observed with parallelization
depend on a number of factors, including the prevalence of
CPU-intensive tasks and the number of available cores in the
machine that executes the tests. The rationale for this question
are that (1) PASTE would not be useful without observing
speedups and (2) it is important to observe the overhead
associated with the additional test runs required by PASTE.

Table IV shows the 13 of the 25 projects (=52%) for
which we observed speedups in at least one of PASTE’s
configuration. Column “Time” shows the time to run the test
suite sequentially, column “Speedup” shows the ratio s/p,
where s denotes the sequential execution time in seconds
and p denotes the parallel execution time in seconds. As can
be noted, PASTE (and test parallelization) cannot guarantee
faster execution of test suites. However, there are several
projects where it can be beneficial. Results clearly indicate
that the configuration classes was the one that offered the
best trade offs. The median speedup obtained with that config-
uration was 1.59x. Figure 3 shows the distribution of speedups
of PASTE on the same projects listed on Table IV. Although
there were specific scenarios (across different configurations)

Table IV: Projects that achieved speedup for at least one
configuration for parallel test-execution.

project Time Speedup
(sequential) classes methods classesMethods

accumulo 2m50s 1.23 0.92 0.93
atlas 1h22m12s 0.99 0.89 1.08
biojava 5m02s 1.59 1.43 1.49
chronicle-queue 1m20s 1.99 1.48 1.69
commons-collections 34s 1.10 1.06 1.09
commons-io 2m24s 1.00 1.03 1.02
datasketches-java 26s 1.05 0.82 1.02
dubbo 11m27s 0.93 0.84 1.03
kylin 10m38s 1.63 1.13 1.32
maven 59s 2.28 2.25 2.24
mina 49s 1.84 1.47 1.83
ratis 17m50s 1.87 1.20 1.15
wicket 3m19s 1.59 1.49 1.36
Average 1.47 1.23 1.33
Median 1.59 1.13 1.15
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Figure 3: Distribution of speedups for each configuration
(Classes, Methods, ClassesMethods), associated with Table IV.

where PASTE did not yield end-to-end acceleration, there
were important cases were acceleration was observed.

Summary: Results indicate that not all projects can
benefit from test parallelization. Considering the

projects we selected and our current implementation,
we observed speedups in 52% of the projects. The
configuration classes yielded higher efficiency

overall, with average and median speedups of 1.47x
and 1.59x, respectively.

VII. THREATS TO VALIDITY

This section discusses the limitation of our approach and
their corresponding threats to validity.

a) External validity: The benefits of PASTE may not
generalize beyond the observations we made with our data set
of programs. To mitigate this threat, we established a rigorous
selection criteria and included a reasonably high number of
projects. We did observe during the inspection of pom.xml

files that projects differ in characteristics. For example, test
suites where most tests are IO intensive are hard to parallelize
as most tests depend on a limited resourced (e.g., the network,
the disk). We did find that some of the projects have these
characteristics—PASTE could accelerate nearly half of the
test suites in our data set. For those cases, parallelization
within a machine is unlikely to help. Cloud parallelization is
a route to deal with this limitation, but support on Maven
is still limited [28]. Another threat to external validity is
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the choices of parallel configurations we used to evaluate
PASTE. We used a representative set of options that explores
the resources available within each process. Although we can
explore forking, there is no reasons to believe results would
invalidate our findings.

b) Internal validity: In principle, there could be bugs in
the implementation of PASTE that we missed. To mitigate this
threat, the authors cross-verified the implementation scripts
and their results before reaching consensus. The authors also
debugged specific cases of broken dependencies—discussed as
examples on this paper—to ascertain the credibility of results.

c) Construct validity: Construct validity refers to the
degree to which inferences can be made from the proposed
approach and its measures. The key metrics we used to assess
PASTE were (i) the ability to consistently report the same re-
sults in parallel and sequential executions and (ii) the speedup
obtained with the parallelization obtained with PASTE. The
rationale for (i) is that it is important that developers trust
results and the rationale for (ii) is that parallellization is only
relevant if it can accelerate test execution. We believe these
are the most important metrics that developers care when
considering test parallelization.

VIII. KEY OBSERVATIONS AND IMPLICATIONS

The following are the main observations from our study:

• Not all projects can benefit from test parallelization.
Considering the projects we selected, nearly half of them
benefited from it and only few reported a significant
speedup. For example, some projects are IO intensive and
some projects have short-running test suites, for which the
overhead of parallel runs does not pay off. It is important
to note that projects with short-running test-suites are
unlikely to be considered for parallelization. However,
they can still be utilized for evaluation.

• Rerunning test cases (to avoid data races) and rerunning
test classes (to avoid broken test dependencies) after
a parallel execution of a test suite is a lightweight
approach to speed up the execution of test suites with
parallelization.

The following are the main implications of this work:

• Developers can use PASTE as a tool to find and debug
manifested test dependencies, i.e. test dependencies that
manifest a difference during the execution of the test
suite with PASTE. After all such dependencies have
been eliminated, the developer could use the original
configuration options provided by the build system to
execute tests in parallel.

• Developers that prefer not to address manifested test
dependencies, can opt to use PASTE as is and still
observe speedups.

IX. RELATED WORK

In this section, we qualitatively compare and contrast
PASTE with the relevant related work.

A. Test Selection (Minimization, and Prioritization)

Regression testing has been an active research topic [8], [29]
in the domain of software engineering, both in industry and
academia. There has been a plethora of techniques that address
the problems of test-suite selection, prioritization, reduction.
Largely, the soundness, i.e., the reliability of the proposed
solutions comes without a guarantee. This means that the test
cases exercising the subject may be uncover some underlying
faults. Ekstazi [6], [30] is a sound regression test selection
technique that dynamically detects all file dependencies. The
core idea is to maintain a dependency matrix relating files
and tests. Upon changes in files, which can be efficiently
detected by reading file checksums, Ekstazi uses the matrix
to determine which tests require execution. Ekstazi uses file
coverage information to build and update the dependency
matrix. Consequently, there is a small overhead imposed in
the execution of tests, but results indicate that that overhead
pays off.

B. Test Parallelization

Parallelization of software testing is complementary to
selection, prioritization, and reduction but had remained un-
explored until recently despite the fact that parallelization
options existing in most build systems and testing frameworks.
Candido et al. [7] studied the impact of the adoption of
parallelization in Java projects. They showed (1) that the cost
of executing a test suite in parallel mode can be often reduced,
(2) that reduction in runtime cost depends on a number of
factors, including the characteristic of the project (e.g., CPU
intensive, IO intensive, etc.) and the characteristic of the tests
(e.g., several tests, long-runnning tests, etc.) and (3) that the
running test suites in parallel without changing code and tests
can introduce flakiness.

The use of the Single Instruction Multiple Data (SIMD)
design has been previously explored in research to accelerate
test execution [31]–[36]. The SIMD architecture, as imple-
mented in modern GPUs, for instance, allows the execution of
a given instruction simultaneously against multiple data. For
that reason, in principle, one test could be ran simultaneously
against multiple inputs provided that multiple test inputs exist
associated to that one test. Recent work [34], [36] explored
that idea to speedup test execution of embedded software
using graphic cards. Although benchmarks indicate superior
performance compared to traditional multicore CPUs, the use
of the technology in broader settings is limited. For example,
execution of more general programs can violate the SIMD’s
lock-step assumption on the control-flow of threads. This
violation would affect negatively performance. Furthermore,
handling complex data is challenging in SIMD [31], [37].
The approach is promising when multiple input vectors exist
for each test and the testing code heavily manipulates scalar
data types. The datasets used in those papers satisfied those
constraints.

Mahtab [38] and Hansie [39] are two approaches that
introduce test-parallelization windows to perform multi-core
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acceleration at isolated process-level parallelism with inde-
pendent unit test cases. Although isolated address space per
process helps circumvent the issues with test-order dependen-
cies and shared polluted state, this approach is limited to the
nature of the subjects used in the study [38], [39], and does
not generalize externally. PASTE being dependency-agnostic
does not suffer from this limitation as the remedy comes in
the form of test re-executions in subsequent stages is any
test case dependency is violated. Currently, PASTE involves
test-parallelization While Mahtab and Hansie combine test-
selection, prioritization, and parallelization. Yet another recent
tool for test-parallelization of C projects is due to Schwahn
et al. [40]. Unlike Mahtab and Hansie, this tool performs
static analysis to compute test case dependencies on files
and globally shared variables. Specific emphasis is given on
determining parts of a test-suite that have sound parallel
execution with make. Comparatively, the pipeline of PASTE
operates on the basis of a dynamic analysis that employs
unrestricted parallelism devoid of dependency-preservation.
Our empirical evaluation shows that this approach is soundy,
i.e., without a soundness guarantee but practically reasonable.

C. Dependency Tracking

ElectricTest [10] is a tool for efficiently detecting data de-
pendencies across test cases. Dependency tracking is important
as to avoid test flakiness when parallelizing test suites. Elec-
tricTest observes reads and writes on global resources made by
tests to identify these dependencies at low cost. PRADET [22]
is an improvement over ElectricTest. Unfortunately, results in-
dicate that the cost of computing test dependencies is typically
higher then the cost of running the tests sequentially, showing
that the cost of using PRADET to determine which tests need
to be rerun is prohibitive.

TEDD [41] is an NLP-based test-dependency detection tool
targeting web applications which pose different challenges as
program states are manipulated through client-server network
operations which are very different form desktop applications
performing in-memory or disk accesses. We remain to inves-
tigate how PRADET can be adapted to specific domains.

ForkScript [19] shows that Apache maven preferably cir-
cumvents the issue of test case dependency during paral-
lelization by executing each test cases as a separate process,
by forking JVMs. However, generic inter-process communi-
cations due to the underlying build system turns out to be
a performance bottleneck along side the overhead of fork-
ing during parallelization. The solution deployed—patched
maven-surefire-plugin v3.0.0-M5—optimizes forking
by dynamically generating relevant test-execution code rather
than a generic one. Comparatively, PASTE currently does not
perform this optimization but there is no reason why it cannot.
The consequences of this change may be observed as an
improvement in the end-to-end speedup due to parallelization
or reduction in the number of failures manifested due to broken
test-dependencies. We remain to investigate how PASTE
works with this patch in place.

D. Continuous Integration

Google [1], [2] and Microsoft [42] have been creating
distributed infrastructures to efficiently build massive amounts
of code and run massive amounts of tests. Those scenarios
bring different and challenging problems such as deciding
when to trigger the build under multiple file updates [43].
Although such distributed systems are targeted to extremely
large scale code and test bases, the same ideas can be applied
to handle the build process of large, albeit not as large,
projects. For example, Gambi et al. [44] recently proposed
CUT, a tool to automatically parallelize JUnit tests on the
cloud. The tool allows the developer to control resource
allocation and deal with the project specific test dependencies.
Note that test suite parallelization is complementary to these
high-level parallelism schemes.

Continuous Integration (CI) services, such as Travis CI [45],
are becoming widely used in the open-source community [46],
[47]. Accelerating time to run tests in CI is important as
to reduce the period between test report updates. Module-
level regression testing [48], for example, can be helpful
in that setting. It is important to note that test failures are
more common in CI compared to an overnight run or a
local run, for instance. This can happen because of semantic
merge conflicts [49], for instance. As such effect can impact
developer’s perception and tolerance towards failures, we are
curious to know if developers would be willing to receive more
frequent test reports at the expense of potentially increasing
failure rates due to flakiness caused by parallelism.

X. CONCLUSIONS AND FUTURE WORK

This paper presents PASTE, a lightweight approach to
parallelize execution of test suites through the sequential re-
execution of test cases (to avoid data races) and the se-
quential re-execution of test classes (to avoid broken test
dependencies). We evaluated PASTE on 25 projects mined
from GitHub using an objective selection criteria. Results show
that (1) PASTE could circumvent flakiness introduced with
parallelization in all projects that manifested them and that
(2) the best parallel execution mode of PASTE was faster
than the sequential execution mode by a factor of 1.59x.
Overall, our findings showed that PASTE could be used
to guide developers in finding manifested test dependencies
and to automatically parallelize execution of test suites. The
artefacts of this study are publicly available on GitHub under
the following link:

https://github.com/STAR-RG/paste
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