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Abstract

Deep Learning (DL) libraries like TensorFlow and Pytorch simplify
machine learning (ML) model development but are prone to bugs
due to their complex design. Bug-finding techniques exist, but
without precise API specifications, they produce many false alarms.
Existing methods to mine API specifications lack accuracy.

We explore using ML classifiers to determine input validity. We
hypothesize that tensor shapes are a precise abstraction to encode
concrete inputs and capture relationships of the data. Shape abstrac-
tion severely reduces problem dimensionality, which is important
to facilitate ML training. Labeled data are obtained by observing
runtime outcomes on a sample of inputs and classifiers are trained
on sets of labeled inputs to capture API constraints.

Our evaluation, conducted over 183 APIs from TensorFlow and
Pytorch, shows that the classifiers generalize well on unseen data
with over 91% accuracy. Integrating these classifiers into the pipeline
of ACETest, a SoTA bug-finding technique, improves its pass rate
from ∼29% to ∼61%. Our findings suggest that ML-enhanced input
classification is an important aid to scale DL library testing.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Deep Learning (DL) has become a cornerstone of modern computa-
tion, revolutionizing fields such as image and text generation. In
Software Engineering, DL has been used to automate tasks such as
code generation, refactoring, and analysis. Due to the complexity of
developing DL pipelines from scratch, many software projects rely
on well-established deep learning libraries, such as TensorFlow [6]
and Pytorch [35]. These libraries abstract low-level implementation
details, allowing developers to focus on higher-level design and
application logic. However, these libraries are complex and contain
bugs [23]. Eradicating these bugs is important to ensure continued
productivity of ML-enabled applications.

Fuzzing DL libraries is an active area of research [14, 15, 17, 20,
22, 27, 29, 36, 44, 45]. Fuzzing techniques generate input data to
test the functions of the library –APIs, for short– and use some
∗Work done while at the IMDEA Software Institute.

test oracle to determine the presence of a likely bug. One impor-
tant obstacle affecting the efficiency of these tools is the presence
of input constraints, e.g., a constraint involving a pair of tensor1
parameters of an API relating their dimensions. For that reason,
random test generation may yield invalid inputs that fail at runtime,
reducing the efficacy of fuzzing techniques. Recent approaches at-
tempt to address this issue by learning constraints to filter invalid
inputs preemptively [17, 18, 39, 45, 47]. However, these methods
can be computationally intensive or limited in their capacity to
precisely infer constraints. For instance, the constraints inferred
by ACETest [39], a fuzzing technique that automatically extracts
constraints from source code, produces valid inputs at a rate of only
∼29%, on average.

This paper reports on a study to evaluate the effectiveness of
ML classifiers to accelerate DL library testing. We leverage the
observation that examples of API usage are easily accessible in this
domain to train classifiers. To obtain such examples, we generate
inputs at random and, as in prior work [15, 39], observe crashes to
identify positive and negative cases.2 We hypothesize that using
tensor shapes to encode concrete inputs and train ML models is
(1) accurate to capture data relationships and determine validity;
(2) general as most APIs take combinations of tensors, tuples, lists,
and primitive-type data types, which can be directly encoded in
tabular form for training classifiers [8]; and (3) efficient to quickly
classify several inputs at once with batch inference [13].

Our study evaluates three aspects. First, to evaluate accuracy,
we use the AutoGluon [8] AutoML [40] framework to train and
measure different classifiers’ accuracy on a set of 10,000 inputs
over 98 functions of Pytorch and 85 of TensorFlow, finding that
there always exists at least a classifier achieving over 90% accuracy.
Second, to evaluate how general the models are, we test the best
classifier by applying it to 50,000 new input configurations and
validating its robustness in diverse testing scenarios. Our results
show that all our models generalize with over 91% accuracy on
the 183 operators we consider. Third, to evaluate usefulness, we
integrate the models we obtained into ACETest [39], a SoTA API-
level fuzzer for DL libraries. More precisely, we evaluate if the use of
ML classifiers improve the effectiveness of ACETest by discarding
the invalid inputs that ACETest often produces (validity rate 29%)
and requesting a new input. In this scenario, the classifier serves

1A tensor is an 𝑛-dimensional array. A vector is a one-dimensional tensor whereas a
matrix is a two-dimensional tensor.
2DL libraries adopt the defensive programming practice to “fail fast”, i.e., to warn
developers of inputs that violate API preconditions.
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as a filtering mechanism, ensuring that ACETest only executes
the API on inputs the model classifies as valid. We observe an
improvement from 29.1% to 60.7% in average pass rate of ACETest
when incorporating the ML models. Moreover, we show that the
inclusion of the ML models produces a negligible impact on the
bug finding capabilities of ACETest, reporting more than 90% of the
bugs when models are trained with at least 10% of positive samples.

We make the following contributions:
★ Idea. We propose a simple yet effective idea to increase the ra-

tio of valid inputs generated per unit of time of API-level DL
library fuzzers. The approach is particularly effective for APIs
with complex constraints;

★ A comprehensive evaluation of ML classifiers to check the valid-
ity of the inputs for a set of APIs from Pytorch and TensorFlow,
two of the most popular DL libraries today. We use AutoML [40]
to automate the discovery of such classifiers and find that classi-
fiers with accuracy of at least >90% exist for all APIs we analyze
and they generalize well to previously unseen data;

★ A demonstration of the usefulness of ML classifiers by integrating
them with ACETest [39], a SoTA API-level fuzzing tool of DL
libraries. We show that, when used as a pre-filtering mechanism,
to ensure that only inputs predicted as valid are used in the
testing process, the pass rate of the tool, i.e., the ratio of inputs
used for testing that are valid, can be significantly improved,
reaching a pass rate of ∼61%.

Our artifacts are publicly available [4].

2 Background and Example

TensorFlow [6] and Pytorch [35] are two widely-used libraries
that facilitate the training, evaluation, and deployment of machine
learning models. Developers use a comprehensive set of APIs from
those libraries to build their models. Even though TensorFlow and
Pytorch are maintained by different organizations (Google and
Linux Foundation, respectively), they offer very similar APIs.
Tensors. A tensor is a multi-dimensional array. A vector is a one-
dimensional tensor. The APIs from DL libraries heavily rely on
tensors for computation. For example, the API torch.bmm3 performs
multiplication of two tensors.
Input Constraints. APIs of DL libraries often impose constraints
on inputs restricting their usage. For instance, the API torch.bmm
expects the two input tensors to be 3-D tensors. Figure 1a shows
calls to that API with invalid and valid inputs, respectively. Fig-
ure 1b shows the input validation checks performed in the C++
backend of the Pytorch implementation of the API torch.bmm. If
some input constraint is violated, the function TORCH_CHECK raises
an exception that the Python front end captures and propagates to
the client code (Figure 1a) as a RuntimeError.
Motivation. Testing the APIs of DL libraries is an important prob-
lem. Prior work proposed methods to infer API input constraints
–such as the one in torch.bmm– to accelerate bug finding [18, 39,
45, 47] (Section 6 elaborates and expands on related work). For
example, ACETest [39] uses constraint solvers to generate inputs
from input constraints inferred from the code. Unfortunately, these
techniques are inaccurate. As an example, only 5.4% of the inputs

3API documentation: https://pytorch.org/docs/stable/generated/torch.bmm

>>> import torch
>>> # Wrong input
>>> mat1 = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4)
>>> torch.bmm(mat1 , mat2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
RuntimeError: batch2 must be a 3D tensor
>>> # Correct input
>>> mat2 = torch.randn(10, 4, 5)
>>> torch.bmm(mat1 , mat2)
tensor (...)

(a) Negative and positive usage examples.

void common_checks_baddbmm_bmm(const Tensor& batch1 , const Tensor&
batch2 ...

TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor");
TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor");
const auto batch1_sizes = batch1.sizes();
const auto batch2_sizes = batch2.sizes();
int64_t bs = batch1_sizes [0];
int64_t contraction_size = batch1_sizes [2];
int64_t res_rows = batch1_sizes [1];
int64_t res_cols = batch2_sizes [2];
std::vector <int64_t > output_size {bs, res_rows , res_cols };
TORCH_CHECK(batch2_sizes [0] == bs && batch2_sizes [1] ==

contraction_size , "Expected size for first two dimensions
of batch2 tensor to be: [", bs, ", ", contraction_size , "]
but got: [", batch2_sizes [0], ", ", batch2_sizes [1], "].");

...// implementation

(b) Input validation of the API in the C++ backend.

Figure 1: Pytorch’s torch.bmm. The API computes a batch

matrix-matrix product of matrices.

that ACETest generates for the TensorFlow API SigmoidGrad4 are
valid. This API computes the gradient of the sigmoid function.
Example. We illustrate the benefits of using classification models
and batch inference to accelerate fuzzing. Considering the Sigmoid-
Grad API, Table 1 shows the breakdown of time of ACETest and
ACETest+ML across the four steps of (valid input data) test genera-
tion: (1) Generation, (2) Processing, (3) Inference, and (4) Execution.
Column “t” shows the total time in seconds, column “#” shows the
number of valid inputs generated, and column “#/t” shows the ratio
of inputs generated per second, which is our proxy of efficiency.
The higher that number the better. Note that ACETest spends the
bulk of its time (31s) executing the API. At a high level, the ML
integration speeds up the test generation process by filtering which
inputs are worth executing. In the following, we elaborate on the
four steps mentioned above.

Generation is responsible for generating inputs. The process is
identical in both approaches. For this API, the ACETest generator
produces 5K inputs in 1s. Processing and Inference are unique
to ACETest+ML. Processing consists of extracting abstract values
from concrete inputs (e.g., tensor data) to feed into the model for
inference. Inference classifies inputs based on their likelihood of
being valid. ACETest+ML uses batch inference to speed up end-
to-end fuzzing time. Batch inference utilizes optimized memory
access and hardware optimizations to enable faster inference of
multiple inputs in one inference query [12, 13, 34]. More specifically,
ACETest+ML creates a batch with the full set of 5K abstract inputs
for inference to query the model. In this example, inference takes
about ∼0.1s on a batch with all of the 5K (abstract) inputs, reducing

4https://www.tensorflow.org/api_docs/python/tf/raw_ops/SigmoidGrad

https://pytorch.org/docs/stable/generated/torch.bmm
https://www.tensorflow.org/api_docs/python/tf/raw_ops/SigmoidGrad
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Table 1: Runtime breakdown for 5K randomly-generated

inputs for the API raw_ops.SigmoidGrad with ACETest and

ACETest+ML.

Approach Steps t # #/t
Generation Processing Inference Execution

ACETest 1s 0s 0s 31s (5K) 32s 235 7.3
ACETest+ML 1s 1.5s 0.1s 7.4s (332) 10s 143 14.3

the number of inputs to process in the next step from 5K to 332. In
contrast, ACETest without ML carries all 5K inputs to the next stage.
To emphasize the importance of batching, it is worth noting that if
ACETest+ML had queried the model once per input (i.e., 5K times),
the cost of inference would increase to 195s, defeating the purpose
of the ML integration. Finally, the execution step is identical in
both approaches. ACETest without ML takes 31s to produce 235
valid inputs from 5K inputs whereas ACETest+ML takes 7.4s to
produce 143 valid inputs from 332 inputs. Overall, considering the
four steps, ACETest produces valid inputs at a ratio of 7.3 inputs
per second while ACETest+ML produces valid inputs at a ratio of
14.3 inputs per second. To sum up, considering this scenario, we
observe that the usage of classification models and batch inference
double the ratio of valid inputs that ACETest generates per second.

3 Study

In this section we describe our empirical study to assess the effec-
tiveness of ML models in learning DL library constraints. We aim
to answer the following research questions.
RQ1 How effective are ML models in learning input constraints

of DL library APIs?
RQ2 Do ML models generalize outside training data sets?
RQ3 Do ML models improve test input generation for DL library

APIs?
RQ1 evaluates how effective the use of ML models is to predict

input validity for DL library APIs. To evaluate the generalizability
of the best learned models, RQ2measures their performance on data
outside the training datasets. Finally, RQ3 investigates the extent to
which ML models help a state-of-the-art fuzzing technique, namely
ACETest [39], generate valid inputs faster.

Figure 2 shows an overview of the study we conduct to answer
these research questions. We ❶ start from the popular DL libraries
Pytorch [35] and TensorFlow [6], from where we collect a dataset
of DL library operations, covering a wide variety of operations
and constraints. Then, ❷ given a target operation to analyze, we
automatically generate a dataset of valid and invalid inputs for the
operation using two strategies: a (i) random strategy and a (ii) pair-
wise strategy. Then, we train a family of off-the-shelf ML models on
the automatically generated dataset to distinguish between valid
and invalid inputs, and therefore capture the constraints of the op-
eration. We then ❸ assess the effectiveness and the generalizability
of the trained models using standard metrics in ML (precision and
recall). Finally, we evaluate the models in a practical scenario, by
integrating them into the ACETest [39] pipeline to improve test
input generation for DL library operations.

Below we describe how we obtained the target subjects and how
we performed each step of our study.

Training Data Generation & Model’s Training

Test Input Generation 

PyTorch TensorFlow

Target DLL Ops

python gen-inputs.py 
[Random, Pairwise]

python 
ml-models.py

Valid inputs Invalid inputs

Best ML 
Model

Test Case Generation

Test Case Execution

Best ML 
Model

ACETest

1

2

3

Figure 2: Overview of our study.

3.1 Subjects

We use Pytorch (version 2.2.2) and TensorFlow (version 2.16.2), two
of the most popular and widely used deep learning libraries today.
We use a total of 183 APIs with input constraints; 98 APIs from
Pytorch and 85 APIs from TensorFlow. We use the list of APIs from
FreeFuzz [45] and check if executing them with random inputs
would raise exception, indicating the presence of input validation
checks. The input constraints vary in complexity.

3.2 Training Data Generation

To be able to train ML models to learn the constraints of DL library
operations, we need to generate and label a training set composed of
valid and invalid samples. Given the huge input space of DL library
operations, mainly due to variability in the size and dimensions
of tensors, it is infeasible to generate all possible inputs for an
operation. Thus, we reduce the input space by generating training
inputs within a certain range of values. For Tensor arguments, we
limit the maximum dimension of the tensor to 6, and each length
in the shape of the tensor to the range [0,10]. For int arguments,
we restrict the range of values to [-100,100]. Values for string
arguments are restricted to a set of predefined strings, obtained from
the documentation of the corresponding API. Finally, arguments of
type float and bool have no restrictions. Additionally, we do not
impose any restriction on the tensor elements.

We defined the ranges of values for each argument type based
on common values used in practice. To obtain these values, we
collected code snippets from Pytorch issue reports created in the
period between Sep 14, 2021 - Jun 27, 2024. Then, we leverage
the Llama35 Large Language Model to analyze the code snippets
and automatically extract tensor values and shapes. We do this by

5https://github.com/meta-llama/llama3

https://github.com/meta-llama/llama3
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providing a structured prompt to the model in order to guide it to
produce a standardized JSON-like output for any recognized tensor
in the issue report. Through this process, we collected 910 tensor
configurations, where the maximum number of dimensions was 6.
We limited the maximum size of a dimension to 10, which is the
largest size among the top-5 most frequently occurring shapes.

Given a target API, using the ranges of values defined above, we
create a training set comprised of 10K samples using two strategies:

Random. In the Random strategy, for each argument of the
target operation, we randomly generate 10K tuples, where each
element is of the corresponding argument type. Then, we execute
the target operation on each input tuple. If the operation raises an
exception, we consider the input as invalid, as it is rejected by the in-
put validation code. Otherwise, if the operation returns successfully,
we consider the input to be valid. Note that the assumption that the
existing input validation code is correct is a common assumption
in the literature on constraint generation [18, 39].

Pairwise. In the Pairwise strategy, we use pairwise combina-
torial testing [7, 9] to generate inputs. Pairwise testing examines
every possible combination of values for every pair of input pa-
rameters. Intuitively, this strategy samples the input space more
uniformly compared to the Random strategy. If all pairwise com-
binations are covered before reaching the 10K inputs we aim to
generate, we start over from the first combination until reaching
10K. It is worth noting that string and primitive-type values are
generated at random in this process. Similar to the Random strategy,
we determine the label of each input by executing the target API.

3.3 ML Model Training

For a target API, we train ML models using the corresponding
training set generated in the previous step. The generated set of
10K samples is split into a training set and a test set using a 80:20
ratio. To account for the randomness, we repeat the training process,
including the generation of the dataset, 10 times for each target
API, using a different random seed each time.

Features used to train the models are essentially the raw input
values, encoded depending on their type. For int and float ar-
guments, we use their values directly. For string arguments, we
encode them using a mapping to integer values. For Tensor argu-
ments, we discard the actual tensor elements, and encode just the
shape of the tensor, which is a tuple of integers. Finally, for bool
arguments, we encode them as 0 and 1. This encoding is necessary
to allow the ML models to properly process the input values.

To actually train different ML models we rely on the Auto-
Gluon [2] Python library, which automates ML tasks. During train-
ing, AutoGluon fits a family of various ML models, ranging from
off-the-shelf boosted trees to customized neural networks. After
training, a leaderboard of the best performing models can be con-
sulted, and the user can select the best performing models for
further evaluation. Below we list the models which more frequently
appear as the best performing models in our experiments (the com-
plete list can be found online in the AutoGluon documentation).
CatBoost [37] is an ML algorithm based on gradient boosting on
decision trees. Gradient boosting is an ML ensemble technique
that combines predictions from multiple weak models, typically
decision trees, in a sequential manner, so that each new model

corrects the errors of its predecessor. LightGBM [25], also based
on gradient boosting, is characterized by a histogram-based learn-
ing approach, which constructs histograms of continuous features,
subsequently utilizing these discrete bins to find the optimal split
over features. XGBoost [11], or Extreme Gradient Boosting, is an
optimized version of gradient boosting. One of the biggest strengths
of XGBoost is its speed and efficiency.NeuralNetFastAI is a model
from FastAI [3], a library that provides fast neural network training.
ExtraTrees is an ensemble ML model, available in the scikit-learn
library [5]. It trains numerous decision trees and aggregates the
results from the group of decision trees to output a prediction.

It is important to note that AutoGluon uses cross-validation
when training the available ML models. Cross-validation is a tech-
nique that subsequently splits the training data into 𝑘 folds, trains
the model on 𝑘−1 folds, and evaluates it on the remaining fold. This
process is repeated 𝑘 times, and it is used with the goal of reducing
over-fitting and increasing confidence in the model’s performance.

3.4 ML Models Evaluation

To evaluate the performance of the ML models we use the standard
metrics precision and recall. These metrics are computed from the
model predictions on the test set, which can be classified into true
positives, false positives, true negatives, and false negatives.
True Positives (TP). A true positive is an input that is accepted by
the input validation of the target operation and the model correctly
predicts as valid.
False Positives (FP). A false positive is an input that is rejected
by the input validation of the operation, but the model incorrectly
predicts as valid. In a practical scenario in which the model is used
to filter inputs, a false positive would lead to the model accepting
an invalid input, and therefore needlessly executing the operation.
True Negatives (TN).A true negative is an input that is rejected by
the input validation of the target operation and the model correctly
predicts as invalid.
False Negatives (FN). A false negative is an input that is accepted
by the input validation of the target operation, but the model incor-
rectly predicts as invalid. A false negative indicates that a model
would reject a valid, potentially bug-revealing, input.

From these four prediction types, we measure precision and
recall of a classification model as follows: Precision=TP/(TP+FP),
Recall=TP/(TP+FN). Essentially, precision measures the proportion
of all the inputs predicted as valid that are actually valid; it is higher
when the model makes fewer false positive predictions. Recall, on
the other hand, measures the proportion of all valid inputs that
were correctly predicted as valid; it is higher when the model makes
fewer false negative predictions.

3.5 Test Input Generation

In the last part of our study, we focus on the practical application
of the trained ML models. Concretely, we study how the obtained
classifiers can be used to improve test input generation for DL li-
brary operations. To this end, given a target operation, we integrate
our classifiers into the ACETest test generation pipeline.

ACETest [39] generates test inputs for DL library operations by
generating solutions to its previously extracted constraints. Since
these constraints are expressed as Z3 formulas, ACETest uses the Z3
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Table 2: ML models effectiveness in learning DL library con-

straints, reporting averages over 10 runs for positive and

negative samples, generation time, and best-model precision

and recall per data generation strategy.

Target Training Data Model Performance

DL Library #APIs Technique #Pos. #Neg. Time (sec.) Precision Recall

Pytorch 98 RANDOM 1,633 8,291 46.87 87% 79%
PAIRWISE 1,633 8,263 49.77 88% 82%

TensorFlow 85 RANDOM 1,699 8,300 5.18 90% 78%
PAIRWISE 1,529 8,470 5.71 91% 80%

solver to generate the test inputs. In our integration, before actually
invoking the target operation on the generated inputs, we first pass
them through the best performing ML model for the operation.
The classifier acts as a pre-filter, checking input validity before
executing the operation. If the model predicts the input as valid, we
proceed with the execution of the operation. Otherwise, we discard
the input and generate a new one until we process all the inputs
that ACETest was instructed to generate. In our experiments, we
set the number of inputs to generate to 5,000.

Following the ACETest evaluation, we assess the improvement
achieved by incorporating the ML classifiers using the pass rate
metric. The pass rate evaluates the ratio of generated test cases that
can pass all input validation checks of the target operation. Either
for the standard ACETest, or for the ACETest with the integrated
ML model, we can measure the pass rate by computing the ratio of
inputs that do not trigger an exception when executed on the target
operation. Additionally, in both cases, we measure the time taken
for the whole testing process as well as the ratio of valid inputs
generated per second. Finally, we assess how the inclusion of the
ML models affects the bug finding capabilities of ACETest.

3.6 Implementation and Setup

All the experiments we performed are implemented as Python
scripts, using Pytorch 2.2.2 and TensorFlow 2.16.2. To train the ML
models, we rely on AutoGluon 1.1.1. For evaluating the improve-
ment on test input generation, we extend the ACETest tool publicly
available on GitHub [1], with the ability to predict validity of the
generated inputs using our trained ML classifiers.

We run all our experiments on a workstation with a Xeon Gold
6154 CPU (3GHz), with 128 GB of RAM, running Debian/GNU
Linux 11. Finally, all the scripts and data required to obtain the
results presented in this paper are available online [4].

4 Experimental Results

This section presents the results for each research question.

4.1 Effectiveness of ML models in learning DL

library constraints (RQ1)

Table 2 shows the results of our study for RQ1. For each training
data generation strategy (random and pairwise), we report the
average number of positive and negative samples in the training
set, the average time taken to generate the training set. Additionally,

we report the corresponding average precision and recall values
achieved by the best performing models.

We observe that, on average, ML models can achieve high preci-
sion and recall in learning the properties of DL library constraints,
with up to 88% precision and 82% recall in the case of Pytorch
operations, and up to 91% precision and 80% recall in the case of
TensorFlow operations. Moreover, we observe that using the pair-
wise strategy consistently leads to better precision and recall values
in both DL libraries, compared to the random strategy.

Notably, these results show that state-of-the-art ML models can
achieve impressive performance in classifying the input validity
for DL library operations, even with a relatively small percentage
of positive samples in the training set. For each target API, our
training data strategies generate (on average) up to ∼17% of positive
samples. Though this low percentage of positive samples may pose
over-fitting risks, as we show in Section 4.2, the models are able to
generalize well to unseen data.

It is worth mentioning that the time taken to generate the train-
ing data is not significantly different between the two strategies,
with an increase of ∼3 seconds for the pairwise strategy just in the
case of Pytorch operations. Moreover, it takes less than a minute to
generate the training data on average for each target API.

4.1.1 Random vs Pairwise. Let’s now compare in more detail the
performance of the models trained with each strategy. Figure 3
shows the distribution of precision and recall values achieved by the
ML models considering the two training data generation strategies
and all the analyzed DL library operations. Overall, the pairwise
strategy leads to an improvement in the performance of the models
over the random strategy. Though on average there is no significant
difference between the two strategies, we believe the diversity
of samples generated by the pairwise strategy is the key factor
contributing to the higher precision and recall values.

Considering 80% as the threshold for a good model, the random
strategy allows to achieve a precision of at least 80% in 89% of
the target operations, and a recall above 80% in 73% of the target
operations. When we use the pairwise strategy, the amount of
cases for which we obtain a precision of at least 80% remains the
same. However, the amount of cases for which we obtain a recall
above 80% increases to 79%, respectively. Higher recall values are
preferable as they mean fewer false negatives, so fewer valid inputs
are incorrectly discarded. This suggests that the pairwise strategy
is more effective for testing.

In both strategies, for the rest of the cases the precision and recall
values are equally distributed between 0% and 80%, with a slight
tendency to 0%. Belowwe discuss inmore detail operations in which
the models achieve an outstanding performance and operations in
which the performance is poor.

4.1.2 Best Performing Models. There are various operations with
complex constraints for which the models achieve a remarkable
performance. Table 4 shows some examples of operations with
complex constraints. For instance, from Pytorch, the operation
broadcast_to(input, shape) requires that the length of the shape is
greater or equal to the dimension of the input tensor; the cartesian_-
prod(*tensors) operation requires all tensors must be 1D tensors;
and the MaxPool2d operation needs the kernel size to be defined in
terms of the input size and padding, while the stride and padding
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Figure 3: Distribution of the precision and recall values achieved by ML models when learning DL library operation constraints.

Each plot reports the frequency of precision/recall values for the random (left) and pairwise (right) training data generation

strategies.

Table 3: Top-5 best performing models for API constraint

learning.

Model Frequency Precision (avg) Recall (avg)

CatBoost 47.1% 94% 86%
LightGBM 18.8% 95% 83%
NeuralNetFastAI 12% 81% 62%
XGBoost 11.2% 87% 82%
ExtraTrees 10.9% 93% 88%

Table 4: Operations with complex constraints for which the

trained ML models achieve a remarkable performance.

(a) Pytorch

API Constraint Performance

Model Precision Recall

broadcast_to(input, shape) len(shape) >= input.dim() LightGBM 90% 90%
cartesian_prod(*tensors) all t in tensors: t.dim() = 1 CatBoost 83% 100%
MaxPool2d(input, kernel_size, kernel_size ≤ input.size() + 2 × CatBoost 100% 97%
stride, padding) padding ∧ stride > 0 ∧ padding >= 0

(b) TensorFlow

MatrixInverse(tensor) tensor.shape() = [..., M, M] LightGBM 100% 95%
math.top_k(input,k) tensor.shape() = [..., N] ∧ N ≥ k ExtraTrees 100% 100%
split(value, num_splits, axis, value.shape()[axis] // num_splits = 0 LightGBM 97% 84%
num) axis ∈ [-value.dim(),value.dim()]

also have to satisfy certain conditions. In the case of TensorFlow,
some example operations for which the models achieve a good
performance are the MatrixInverse(tensor) operation, which re-
quires a tensor whose inner-most 2 dimensions form square ma-
trices; the tf.math.top_k(input,k) operation, in which the tensor
can have any dimensions but the last one must be at least k; and
the split(value, num_splits, axis, num) operation, where num_splits
value must evenly divide the value value.shape[axis] and axis must
respect a range related to the tensor dimension.

As Table 4 shows, the trainedMLmodels are capable of capturing
these complex constraints with high accuracy. In Table 3 we show

the best performing models considering all the target APIs and all
training runs, the frequency of each model as the best performing
model, and their average precision and recall values. Notably, the
gradient boosting models (CatBoost, LightGBM, and XGBoost) are
themost frequent best performingmodels in∼77% of the cases, with
CatBoost leading in ∼47% of the cases. In the remaining cases, the
NeuralNetFastAI and ExtraTreesmodels are the best performing
models, with a frequency of 12% and ∼11%, respectively.

However, for some operations the ML models achieve a poor
performance. Some examples of these cases are the operations
addcmul, bmm or einsum from Pytorch, where the precision and
recall values are nearly 0%. The poor performance is mainly due to
the training data generation process not producing enough positive
samples. In these cases, our strategies generate less than 52 positive
samples. For instance, the operation bmm(input, mat2) requires both
input tensors to be 3D tensors and contain the same number of
matrices, e.g., input = (b, n, m) and mat2 = (b, m, p). In this case, our
training data generation process generates only 4 positive samples
on average, which results in an imbalanced training set.

4.2 Generalization of ML models (RQ2)

It is well known that ML models can achieve a high performance
on the training set, but fail to generalize to unseen data. To under-
stand the generalization capabilities in our study, we analyze the
best performing models on a new dataset of 50,000 samples, and
measure the precision and recall achieved on this new dataset. Fig-
ure 4 shows the comparison of precision and recall values achieved
during training and during the evaluation on the new dataset.

Overall, the models are able to generalize well to unseen data.
In only 20% of the cases, precision is lower during generalization.
However, most of these cases are above the 80% threshold and very
close to the diagonal line, indicating a small difference between the
precision values achieved during training and generalization. In
the case of recall, only in 12% of the cases the model achieved a
lower recall value during the generalization analysis. Again, most
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Figure 4: Comparison of Precision/Recall obtained during

training the ML models and during their evaluation on a

new dataset of 50,000 samples. Each dot represents, for each

precision (recall) value achieved during training, the corre-

sponding precision (recall) value achieved during the gener-

alization analysis. Green circles indicate a better precision

(recall) value during generalization, while red crosses indi-

cate a worse precision (recall) value during generalization.

of these cases are very close to the diagonal line, indicating a small
difference between the recall values.

There is one outlier case in both metrics, corresponding to the
torch.dot(input, tensor) operation. For this operation, the model
achieved a precision of 92% during training, which drastically de-
creased to 0% during the generalization analysis. That is, though 181
positive samples were generated among the 50,000, the model was
not able to correctly predict any of them as valid, resulting in 0 true
positives. Similarly, the recall value decreased from 66% to 0%. This
operation requires the two input tensors to be 1D tensors and have
the same number of elements. Though the model performs well
during training, only an average of 37 positive samples is generated
for this operation, which may be leading to over-fitting.

Table 5: ML-enhanced test input generation for DL library

operations. For each target API, 5,000 inputs are generated

and the ACETest pipeline is executed with and without ML

models. We report the average testing time, total analysis

time, average number of invalid inputs, average pass rate,

and average number of valid inputs generated per second.

Approach Analysis Time API Inputs

Avg. Total #Invalid Pass Rate #Valid/s

All APIs (41)
ACETest 54.8s 2,245s 3,542.9 29.1% 58.3
ACETest+ML 21.4s 876s 354 60.7% 42

ACETest Pass Rate >= 40% (10)
ACETest 42.5s 425s 846.5 83.1% 197.7
ACETest+ML 35.4s 354s 305.4 90.9% 116.9

ACETest Pass Rate < 40% (31)
ACETest 58.7s 1,820s 4,412.7 11.8% 13.4
ACETest+ML 16.9s 522s 369.7 51% 17.9

4.3 Test Input Generation improvement with

ML models (RQ3)

Table 5 shows the results of our experiments for RQ3. We report
the performance of the test input generation process for two ap-
proaches. ACETest refers to a SoTA test input generation tech-
nique [39], while ACETest+ML is the extension of the ACETest
pipeline that incorporates, for a target operation, the best perform-
ing ML model in order to predict input validity before actually
executing the operation. For each technique and DL library, we
report the average time of the test input generation process and the
total analysis time. We also report the average number of invalid
inputs generated, with the average pass rate achieved by the testing
process. Furthermore, we report the average number of valid inputs
generated per second, our proxy for the efficiency of the testing
process (Section 2). These metrics are reported for three different
groups of target operations: all the analyzed APIs, the APIs for
which ACETest achieves a pass rate of at least 40% (easy), and the
APIs for which ACETest achieves a pass rate below 40% (hard).

Note that, for this analysis, we only consider the APIs that are
both part of our dataset as well as the dataset of the ACETest tool.
This is a total of 41 APIs considering both libraries.

4.3.1 Pass Rate (Accuracy). Notably, considering all the analyzed
functions from Pytorch and TensorFlow, the average pass rate
goes from 29.1% in the standard ACETest process to 60.7% when
incorporating the ML models, representing an improvement of
108.5%. Moreover, even when the pass rate of ACETest is relatively
high (>40%), the ML models are able to increase the average pass
rate from 83.1% to 90.9%. When ACETest achieves a pass rate below
40%, the improvement is even more significant, from 11.8% to 51%.

The main reason behind this improvement is that the ML models
are able to correctly discard many of the invalid inputs generated
by the ACETest process. For instance, considering all the opera-
tions, the average number of invalid inputs generated decreases,
on average, from 3,542.9 to 354. The pass rate improvement, as well
as the considerable reduction in the amount of invalid inputs used
to unnecessarily test the target operation, indicates that the ML
models can be effectively used to improve the test input generation
process for DL library operations.
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Figure 5: Pass Rate improvement of ACETest+ML.

To better analyze the improvement achieved by incorporating the
ML models in the ACETest pipeline, we analyze the performance of
the test input generation process for each target operation. Figure 5
shows the improvement achieved on each target function. For each
target, we plot the pass rate achieved by the standard ACETest
process (ACETest) and the pass rate achieved by ACETest extended
with the pre-filtering mechanism using the best performing ML
model (ACETest+ML). The functions are shown in increasing order
of the pass rate achieved by ACETest.

In some operations, the improvement is remarkable. For instance,
for SeluGrad from TensorFlow, a common activation function com-
puting the gradients for the scaled exponential linear (Selu) opera-
tion, the pass rate goes from 2.4% to 68.4%. In the case of ACETest,
4,876 invalid inputs are generated out of the 5,000 inputs produced
to test the function; while in the case of ACETest+ML, only 168
inputs were used to test the function with 53 of them being invalid.
There are various other cases with a considerable increase in the
pass rate, such as torch.addr and torch.pairwise_distance. These
examples illustrate the ability of the ML classifiers to discard most
of the actually invalid inputs produced by the ACETest process.

There are, however, some operations for which the pass rate
is 0 in both approaches. Some examples of these cases are the
torch.index_select, torch.bitwise_and and torch.bitwise_or oper-
ations from Pytorch. Although most of the constraints generated
by ACETest are sound, the inferred constraints for these specific
operations are too weak, which leads to the generation of many
invalid inputs. For instance, for the three mentioned operations the
5,000 inputs generated by ACETest are all invalid. This also affects
the performance of ACETest+ML, as there are no valid inputs to
test the operations. Nevertheless, it is worth remarking that for
these cases the ML models correctly predict all the inputs as invalid,
preventing unnecessarily testing the operations.

To analyze the statistical significance of the difference between
the pass rates achieved by ACETest and ACETest+ML after running
each technique on 41 APIs, we first run the Kolmogorov-Smirnov
test [30] on the two distributions to test the normality of the distri-
butions. Both distributions produce 𝑝-values less than 0.05 (0 for

P
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ACETest ACETest+ML

Figure 6: Pass rate distribution forACETest andACETest+ML.

ACETest and 0 for ACETest+ML) indicating the non-normality of
the distributions. This result informs us to use the nonparametric
Wilcoxon Rank Sum test [46] to calculate statistical significance.
From this test, we obtain a 𝑝-value of 0.00408, which rejects the
null hypothesis that the difference between the distributions (of
pass rates from ACETest and ACETest+ML) do not differ with sta-
tistical significance. For reference, a 𝑝-value below 0.05 is sufficient
to reject the null hypothesis. Furthermore, we measure the Cohen’s
𝑑 [38] value between the distributions ACETest+ML and ACETest
to calculate the effect size, i.e., the 𝑑 value measures the magnitude
of the difference between a pair of distributions. We find a Cohen’s
d value of 0.76 indicating that the ML-based pre-filtering to have a
medium effect size. Figure 6 shows the distribution of pass rates.

4.3.2 Analysis Time and Valid Inputs per Second (Efficiency). Includ-
ing the ML models in the ACETest pipeline results in a significant
improvement on the average time taken to generate the inputs.
Considering all the analyzed APIs from Pytorch and TensorFlow,
the average time taken to generate the inputs decreases from 54.8s
to 21.4s, while the total analysis time decreases from 2,245s to 876s.

Though the time is considerably reduced, many valid inputs
could be generated and incorrectly discarded by the ML models. To
more accurately assess the efficiency of the test input generation
process, we report the average number of valid inputs generated per
second. Considering all the APIs, the average number of valid inputs
generated per second is better in the case of ACETest (58.3) than
in the case of ACETest+ML (42). This is also the case for the APIs
with a pass rate above 40%. However, for APIs for which ACETest
performs poorly (pass rate below 40%), the average number of valid
inputs generated per second is better in the case of ACETest+ML
(17.9) than in the case of ACETest (13.4). Moreover, if we only
consider the operations for which the corresponding training data
contains a reasonable proportion of valid inputs (more than 10%),
the metric increases from 20.1 to 39.3 valid inputs per second.

It is important to remark that our batching inference plays a cru-
cial role in the efficiency of our approach. We note that, on average,
enabling batching reduces the analysis time by ∼49%. These results
show that incorporating ML models in the ACETest pipeline can
significantly reduce the time needed to generate the inputs, and,
when the ACETest process has a low pass rate, the ML models can
help to generate valid inputs more efficiently.

4.3.3 Bug Detection. Finally, we assess how the inclusion of the
ML models affects the bug finding capabilities of ACETest. To do
so, we consider a set of bug-triggering inputs previously reported
by ACETest, and analyze whether the ML models correctly predict
the validity of these inputs. As in ACETest+ML the models are



Improving Deep Learning Library Testing with Machine Learning AST ’26, April 13–14, 2026, Rio de Janeiro, Brazil

0 0.2 0.4 0.6 0.8

torch._stack

tf.raw_ops.Conv3DBackpropInputV2

tf.raw_ops.Conv2DBackpropInput

tf.raw_ops.MaxPoolGrad

tf.raw_ops.GatherNd

torch.index_put_

torch.grid_sampler_2d_cpu_fallback

tf.raw_ops.DenseToCSRSparseMatrix

tf.raw_ops.ParameterizedTruncatedNormal

tf.raw_ops.StatelessRandomGammaV2

torch.slow_conv3d

tf.raw_ops.Conv2D

tf.raw_ops.Gather

tf.raw_ops.CropAndResize

tf.raw_ops.MaxPoolV2

tf.raw_ops.SparseFillEmptyRowsGrad

tf.raw_ops.LSTMBlockCell

torch.fbgemm_linear_quantize_weight

tf.raw_ops.BiasAddGrad

torch.fbgemm_pack_gemm_matrix_fp16

tf.raw_ops.AvgPool3D

Ratio of Valid Inputs

Figure 7: Ratio of valid inputs in the training data generated

for the APIs with bugs.

Table 6: Successful predictions on buggy inputs considering

models trained with valid-input ratios above a threshold.

Ratio >= 0% 1% 5% 10% 20% 30% 40% 50%

Success 72% 77% 84% 91% 90% 100% 100% 100%

used before actually calling the target API, we expect the models to
correctly predict as valid the bug-triggering inputs, which would
indicate that ACETest+ML is also able to detect the bugs.

For this analysis, we consider 40 bugs found by ACETest, 12
in Pytorch and 28 in TensorFlow. Note that, though ACETest’s
replication package [39] includes 85 bugs, we only consider the bugs
related to the target operations and not in the API’s validity checks.
To ensure that our models are trained with values in adequate
ranges, we inspect all the bug-triggering inputs to collect ranges
for int and float values, and maximum values for tensor shapes and
dimensions, which we use when generating the training data.

While our training data generation strategies are useful for many
APIs, they do not always guarantee the generation of positive sam-
ples, especially for APIs with complex constraints and various ar-
guments. Considering the APIs related to the 40 bugs, we were able
to train ML models for 22 (55%) of them. For the remaining cases,
including complex APIs such as torch.histogramdd or tf.raw_-
ops.MaxPool3DGrad requiring several input tensors with related
shape values, we were not able to train the models. Thus, we focus
the experiment on the 22 APIs for which we were able to train the
models, and argue that with a relatively low ratio of valid inputs in
the training data (10%), potentially obtained from mining GitHub
data, using an LLM, or even using FreeFuzz [45], we could train
accurate models for the remaining APIs. Figure 7 shows the ratio
of valid inputs in the training data generated for the 22 APIs.

Considering the 22 bugs, our models correctly predict as valid
16 bug-triggering inputs (72%). Note that for several APIs (e.g.,
tf.raw_ops.MaxPoolGrad) the training data included a very low
ratio of valid inputs, insufficient to train accurate models. Thus, we

investigate the success rate of models trained with different ratios
of valid inputs. Table 6 shows the success rate when considering
models trained with a ratio of valid inputs greater than a threshold,
ranging from 0% to 50%. Notably, even from a small ratio of 10% of
valid inputs, our models achieve a success rate >90%, being able to
correctly predict as valid the majority of the bug-triggering inputs.

This analysis shows that including our models in the ACETest
pipeline has a negligible impact on its bug finding capabilities.

5 Discussion

5.1 Threats to Validity

An important threat to the validity of our study is the randomness
involved in the generation of the training data and in the training
of the ML models, which may lead to different results in each run.
To mitigate this threat, we repeat the training process 10 times for
each target API, each time using a different random seed. For each
resulting dataset, the ML models are trained and then the average
performance is computed and reported in the results.

Another threat to the validity of our study is the assumption that
the existing input validation code is correct, which is fundamental
for the training process. The rationale is that these are important
libraries used by lots of people; preventing API misuse is very
important. So, it is a reasonable assumption to make in this context.
It is worth noting that this prior work on testing DL APIs also make
that assumption [18, 39]. To mitigate this threat, we implemented a
new input validation code from the documentation of the API for a
random sample of 10 target APIs, and then compared the behavior
with respect to the existing input validation code. For these cases,
we observed that the input validation code is consistent with the
documentation, which gives us confidence on its correctness.

5.2 Limitations

Data Generation for Training.Our study incorporates two strate-
gies to automatically produce training data for each API under
analysis: Random and Pairwise. Although these two strategies are
effective to generate datasets from which we train highly-accurate
ML models, conceptually, they may not be able to produce a suf-
ficient number of positive samples for some operations, or even
do not generate positive samples at all, preventing the training of
the models. We remain to explore other strategies for training data
generation could be explored, such as 3-wise or 4-wise combina-
tions of the input arguments, and even the use of standard sampling
techniques typically used in the training of ML models.
Data Generation for Testing. Our results demonstrate that ML
models can be used to improve the efficiency of API-level fuzzers,
such as ACETest [39]. We encode the problem of learning DL library
constraints as a binary classification problem, in which ML classi-
fiers are trained to predict input validity. Our study shows that the
integration of classifiers with an existing test generator improves
their performance. However, it is important to note the fundamental
limitation of this approach considering the time wasted in gener-
ating inputs that the ML classifiers will later discard. Note that
generating inputs in batches alleviates the problem. An interest-
ing direction of future work is to explore the use of generational
models (e.g., GANs [19], Transformers [43], and Variational Au-
toencoders [26]) to create input data that is likely to be valid.
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6 Related Work

Testing DL libraries. The increasing advances in the development of
ML-based systems requires the availability of reliable DL libraries.
As a result, the testing of DL libraries has become a very active
research area [15–18, 21, 22, 24, 28, 29, 36, 39, 44, 44, 45, 47]. These
approaches can be divided into two categories: model-level fuzzers
and api-level fuzzers, with different ways of extracting constraints.

CRADLE [36] is a model-level fuzzer that takes pre-trained DL
models as input and resolves the test oracle challenge with differ-
ential testing by comparing the inference results from running the
models on CPU vs GPU. Using existing models allows CRADLE
to bypass input constraint checks. AUDEE [22] and LEMON [44]
mutate inputs and weights of existing models using different fitness
functions to derive new test input DL models. On the other hand,
Muffin [21] generates new DL models by converting the structure
of a model to a computational flow graph and mutating the sub-
structures. NNSmith [28] takes API constraints as input from the
user and uses an SMT solver to generate valid DL models.

All of these techniques require API constraints to be provided
as input. On the other hand, NeuRI [29] is a model-level fuzzer
that can automatically derive API constraints by instrumenting
programs and invoking these programs to inductively synthesize
the operator rules. This process requires both valid and invalid API
invocations to infer constraints, which are not available for all DL
library APIs. To combat this, NeuRI mutates existing programs to
generate the required diversity of valid and invalid API invocations.

FreeFuzz [45] is an API-level fuzzer that addresses type con-
straints on API parameters by collecting and executing open-source
programs with DL library API calls to infer data types. Similarly,
DocTer [47] extracts these type constraints from documentation.
DeepREL [17] enhances FreeFuzz by identifying APIs with equiva-
lent parameters and outputs, allowing it to generate test cases that
involve multiple APIs using the same inputs. However, these tech-
niques can still produce invalid inputs through mutation, as they
do not account for tensor shape constraints of the API parameters.

Recently, Large Language Models (LLMs) based techniques have
been introduced to test DL libraries. TitanFuzz [15] leverages gen-
erative and infilling LLMs to generate input programs for testing
DL libraries. FuzzGPT [16] provides existing bug reports to LLMs
and asks it to generate partial or complete code snippets that can
be used as test cases. Due to the inherent nature of LLMs, invalid
inputs are still generated and these techniques also demand greater
computational resources and time compared to traditional methods.

ACETest [39] leverages validity checks embedded in source code
to automatically extract input constraints for DL APIs to generate
valid test cases. DeepConstr [18] enhances existing constraints by
identifying and expanding overly restrictive ones, improving the
bug detection ability of the generated inputs. The inputs generated
by these techniques, however, exhibit low precision and recall,
leading to a significant portion of invalid test cases for DL APIs.

In our study, we demonstrate how our trained models can en-
hance ACETest by incorporating a pre-filtering mechanism. This
mechanism discards invalid inputs before executing the APIs. This
approach can be replicated in other constraint-based methods in
DL library testing (e.g. NeuRI) and other fuzzers, by integrating ML
models to improve input validity prediction.

ML for Constraint Learning. The use of ML models to learn con-
straints in different domains has been studied in the literature [10,
32, 33, 42]. Brun et al. [10] studied the use of support vector ma-
chines and decision trees to classify program properties that may
lead to errors. More recent approaches focus on learning constraints
for complex data structure implementations in Java programs [31–
33, 42]. For instance, Molina et al. [32] proposed a technique based
on artificial neural networks to learn to distinguish between valid
and invalid input data structures for Java programs. Similarly, Us-
man et al. [41] studied the use of ML models to learn relational
properties of data structures. In our study, we focus on learning
constraints for DL library operations, which requires the models to
capture constraints related to tensor dimensions and shapes.

7 Conclusion and Future Work

Testing DL libraries is a very important task to ensure the reliabil-
ity of DL applications. Successfully testing DL library operations
typically requires providing inputs satisfying complex constraints
imposed by these operations. The difficulties in automatically gen-
erating such inputs have motivated the development of techniques
to infer the constraints of DL library operations, and then use these
constraints to guide the generation of test cases. However, these
techniques still show limitations in terms of false positives.

In this paper, we present a study on the ability of state-of-the-art
ML models to capture input constraints of operations from two
popular DL libraries, Pytorch and TensorFlow. Our intuition is that
the availability of input validation code in these libraries can be
exploited to generate training data to produce ML classifiers that
accurately predict the validity of inputs for these operations. We
show that ML models can be very effective in classifying input
validity as measured by the traditional precision and recall metrics.
Furthermore, we analyze the generalizability of these models, and
their potential to improve the test input generation process for DL
library operations. Our results show that ML models generalize
well to unseen data with over 91% accuracy, and that they can be
effectively used to improve the pass rate of a state-of-the-art test
input generation process, increasing it from 29.1% to 60.7%.

As future work, we plan to explore two research directions.
Firstly, we plan to investigate other training data generation strate-
gies, such as 3-wise or 4-wise combinations of the input arguments,
that may allow us to support a wider range of operations. Secondly,
we plan to address the test input generation problem with gener-
ative models, such as GANs, to study the ability of such models
to efficiently generate valid inputs for such operations. We believe
our study opens up a promising research direction to improve the
testing of DL library operations using state-of-the-art ML models.
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