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Abstract

Bugs in compilers, which are critical infrastructure today, can have
outsized negative impacts. Mutational fuzzers aid compiler bug
detection by systematically mutating compiler inputs, i.e., programs.
Their effectiveness depends on the quality of the mutators used. Yet,
no prior work used compiler bug histories as a source of mutators.

We propose IsSUEMUT, the first approach for extracting compiler
fuzzing mutators from bug histories. Our insight is that bug reports
contain hints about program elements that induced compiler bugs;
they can guide fuzzers towards similar bugs. IsSUEMUT uses an
automated method to mine mutators from bug reports and retrofit
such mutators into existing mutational compiler fuzzers.

Using IssUEMUT, we mine 587 mutators from int(1457 + 303)
GCC and LLVM bug reports. Then, we run ISSUEMUT on these
compilers, with all their test inputs as seed corpora. We find that
“bug history” mutators are effective: they find new bugs that a state-
of-the-art mutational compiler fuzzer misses—25 in GCC and 27 in
LLVM. Out of the int(37 + 28) bugs we reported, 60 were confirmed
or fixed, validating our idea that bug histories have rich information
that compiler fuzzers should leverage.
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1 Introduction

Compilers are broadly used in software development. Ensuring their
correctness is therefore critical. An impressive number of fuzzers
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were proposed to find compiler bugs [7, 10, 33, 34]. Mutational
fuzzers [1, 9, 26, 44, 68, 70] were recently shown to be effective.
But, it is challenging to explore the state space of a mutational
fuzzing campaign—expressible as a graph with input programs as
nodes and all possible mutations of those inputs as vertices. So,
high-quality mutators [10, 44] that can produce syntactically-valid
inputs (i.e., self-contained code snippets) to trigger deep compiler
behaviors are needed. We observe that existing mutational fuzzers
do not leverage an important ingredient in creating mutators: the
history of previous bugs. We conjecture that bug reports contain
important hints to drive a fuzzer to areas of the search space that
are likely to reveal bugs. This paper evaluates this conjecture.

Leveraging bug histories for bug finding was explored in other
contexts [8, 45, 53, 55, 72], including compiler fuzzing [11, 50, 68,
73]. But, no prior work derived mutators for mutational fuzzing
from bug histories. Recently, METAMUT [44] used large language
models (LLMs) to obtain mutators for a mutational fuzzer, but
METAMUT does not leverage bug reports.

Our study is based on IsSUEMUT, an approach we propose to
extract mutators from bug histories and fuzz compilers with them.
IssuEMUT has two components: (1) a mining component that semi-
automatically reverse engineers mutators from bug reports, and
(2) an enhanced fuzzer framework that retrofits the resulting mu-
tators into existing mutational fuzzers. We next briefly introduce
these two components (§3 has details).

IsSUEMUT’s mining component takes as input past reports of
fixed bugs, and outputs mutators that can drive a mutational fuzzer
towards similar bugs. Mining is done in four steps. First, IsSUEMUT
automatically extracts bug-triggering input programs-henceforth
called positive inputs—from bug reports. Bug reports with (i) no
inputs or with (ii) inputs that crash the compiler are discarded; the
former are not useful and the latter indicate that a compiler bug
is still present. Second, IsSUEMUT automatically obtains negative
inputs: slight modifications of positive inputs that do not trigger
the reported bugs. Third, we manually confirm that the negative
input does not trigger the bug as the positive input does. Fourth,
IssuEMUT uses LLM agents to automatically generate mutators
(i.e., programs that make simple semantic-changing code transfor-
mations) from the positive and negative inputs. A mutator should
transform negative inputs into positive ones. IsSUEMUT prevents
from generating overfitting mutators by validating them against
additional test cases generated from the mutation description.
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IsSUEMUT’s enhanced fuzzer framework retrofits the “bug his-
tory” mutators into mutational fuzzers (i.e., METAMUT [44] and Ki1T-
TEN [66]). METAMUT is a state-of-the-art (S0TA) mutational fuzzer
that was shown to outperform leading generational and mutational
fuzzers (AFL++ [12], Csmith [67], YARPGen [27], and GrayC [10])
with respect to coverage and unique crashes triggered. KITTEN is a
SoTA grammar-based mutational fuzzer that is language-agnostic
and supports the C programming language. Prior work showed
that KiTTEN outperforms the grammar-based mutational fuzzer
GRAMMARINATOR and the language-agnostic fuzzer Fuzz4ALL in
terms of the number of discovered crashes.

We evaluate ISSUEMUT in two ways. First, we carry out a mining
campaign on bug histories of GCC and LLVM, two widely used
C compilers. We obtain 587 code mutators from int(1457 + 303)
reports (1457 in GCC and 303 in LLVM). Second, we integrate mined
mutators into SOTA mutational fuzzers (i.e., METAMUT and KITTEN)
and conduct compiler fuzzing campaigns using GCC and LLVM
regression tests as seed corpora. We evaluate IssUEMUT across four
dimensions:

1. How do IssuEMUT mutators improve mutational fuzzers?

2. How do the mutators from IssuEMuT and METAMUT differ?

3. How beneficial is it to run fuzzing campaigns with only “suc-
cessful” crash-revealing mutators?

4. How useful are the bugs reported with IssuEMUT?

Considering the first dimension, we assess the impact of IssuE-
MuTt mutators on SoTA mutational fuzzers (i.e., KITTEN and META-
MuT). We build variants of these fuzzers—METAMUT-1 and KITTEN-
1—by augmenting them with IssUEMUT mutators. Across multiple
fuzzing campaigns, METAMUT-1 and KITTEN-1 discover a signifi-
cantly higher number of crashes than their respective baselines.

Considering the second dimension, we find that ISSUEMuUT and
METAMUT mutators have important similarities and differences. For
example, we find that, for both sets, most successful mutators only
reveal one bug and that most bugs are triggered by inputs obtained
from one mutation. But, the sets of mutators are also inherently
different-IssuEMuT mutators focus on finding bugs that use ele-
ments from previously reported ones, while METAMUT mutators
relies on what the LLM learns. A concrete manifestation of this
difference is that ISSUEMUT can mine successful mutators by trans-
forming program elements from the recent C23 specification [21],
as recent bugs are related to those elements [14, 30-32]. We also
find that IssuEMuT and METAMUT mutators are effective. Both sets
lead to several compiler crashes within the 24 hours campaigns
with IsSUEMUT triggering 64 unique crashes that METAMuT did
not find (See Figure 6b).

Considering the third dimension, fuzzing with only successful
mutators triggers more new crashes and triggers them relatively
faster, compared to running separate campaigns that run the origi-
nal, (larger) sets of mutators for longer. Intuitively, fuzzing using
only successful mutators enables more exhaustive coverage of the
search space with mutators that are more likely to help find bugs.
We find, e.g., that a more focused fuzzing campaign triggers 20
crashes that are not triggered by longer-running campaigns with
the full set of IsSUEMUT or METAMUT mutators.

Considering the fourth dimension, we find that GCC and LLVM
developers reacted positively. They confirmed 60 out of int(37 +
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static  int __sync_lock_test_and_set_4 (volatile int*, int);
int v;

int sync_lock_test_and_set (int a)

{ return __sync_lock_test_and_set(&v, a); }

Listing 1: Bug present in Clang since version 12; still present in
version 20. This bug was revealed from two mutations applied
to a seed file; they introduce a declaration for the function call
__sync_lock_test_and_set and replace the extern keyword (not vis-

ible) with the static keyword.
28) bugs that we report from the crashes triggered by IsSUEMuT

mutators.

Lastly, we compare IssuEMuT with Fuzz4ALL [65], a recent gen-
erational LLM-based fuzzer for systems like compilers. We use
Fuzz4ALL in a fuzzing campaign with a 24-hour time budget for the
fuzzing loop. We also use a similar GPU setup as in the Fuzz4ALL
paper, but we fuzz more recent compiler versions to facilitate our
comparison. We repeat this experiment 7 times, generating a similar
number of inputs as in the Fuzz4ALL paper (~450,000 inputs from
14 runs; 7 for GCC and 7 for LLVM), but these are much fewer than
those generated by IsSUEMUT in 24 hours (~6,700,000). Fuzz4ALL
triggers 11 crashes, two of which are duplicate. Of the 9 unique
crashes, 4 are also triggered by IsSUEMUT.

This paper makes the following contributions:

* Idea. We propose the IssuEMUT approach for “mining” data
from bug histories into simple, yet effective fuzzing mutators.
We focus on C compilers, but there is no fundamental reason
why “bug history” mutators should not apply more broadly.

* Mutators. We curate a set of 587 C code mutators, which reflect
salient code features that helped find previously reported bugs.

* Evaluation. We comprehensively evaluate ISSUEMUT against
several baselines (e.g., KITTEN, METAMUT, and Fuzz4ALL). We
find int(37 + 28) bugs, many of which are unique to IsSSUEMUT.

* Lessons. We present several lessons learned from our study
(§ 5.4). For example, we find that mutators exploring recently-
proposed compiler features —e.g., those proposed in the C23
standard [21]- are promising for finding bugs and encourage
fuzzers to test more files with those features.

2 Example

We present a bug-revealing input that [ssSUuEMUT obtains using “bug
history” mutators and provide an overview of IsSSUEMUT’s steps.

2.1 Clang bug #120083

The code snippet below is part of GCC’s test suite [58]:
int v;

int sync_lock_test_and_set (int a)

{ return __sync_lock_test_and_set (&v, a); }

Listing 1 shows a variant of this snippet that triggers a crash
in Clang version 20 (revision 9bdf683). That crash occurs during
LLVM’s IR code generation for method sync_lock_test_and_set.
LLVM developers confirmed our bug report, saying that the root
cause of the crash has been in the codebase since Clang version
12.0.0, which was released on April 14, 2021.1 Two mutations yield
the code in Listing 1. The first mutation, M17 [39], adds a missing
declaration to a function used in the original input; that declaration
uses the extern qualifier. The second mutation, M3 [39], replaces
the extern keyword —introduced by M17- with the static keyword.

!Playground reproduction: https://godbolt.org/z/v3zEGx1xn
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We apply each mutation separately and find that both are needed to
reproduce the bug. The effects of mutations M3 and M17 in Listing 1
are shown in yellow and green, respectively.

2.2 Overview

2.2.1 Positive and Negative Examples. ISSUEMUT uses a semi-
automated approach to obtain positive and negative examples from
bug reports (see § 3). We next summarize how IsSUEMUT obtains
these examples for mutators M17 and M3.

M17. We use the following input from GCC bug report #108777 [16]
to obtain a positive test for M17:

extern void rmemcpy(void «, const void », __SIZE TYPE__);

extern void »memmove(void », const void », __SIZE TYPE__);

extern void smemset(void », int, __SIZE_TYPE__);

void foo(void *p, void «q, int s) { memcpy(p, q, s); }

void bar(void +p, void +q, int s) { memmove(p, q, s); }
void baz(veid «p, int c, int s) { memset(p, c, s); }

The discussion in the report explains that when explicit external
function declarations (e.g., extern void = memcpy(...)) are present
in code, GCC treats them as regular external function references
rather than built-in functions. That treatment prevents GCC from
applying built-in function optimizations and transformations. Is-
SUEMUT replaces these explicit extern function declarations with
standard headers to obtain a negative test case, so that the compiler
recognizes these functions as built-ins and apply instrumentation.
To sum up, from these examples, ISSUEMUT creates a mutator (M17)
that analyzes the code to determine the signatures of functions
with a missing declaration, then it adds a function declaration with
an extern modifier.

M3. We use the following input from GCC bug report #108449 [15]
to obtain a positive test for M3:
static int vfork (); veid f() { vfork(); }

The bug report explains that this input manifests a regression in
the compiler. GCC-13 raises an Internal Compiler Error (ICE) when
compiling code with a static and undefined function declaration.
In that case, the compiler internally attempts to convert the static
declaration to extern declaration, but it fails. The corresponding
negative input behaves similarly, i.e., the corresponding mutator
replaces the static modifier in a function declaration with extern
to simulate the problematic scenario reported in this regression. To
sum up, from this pair of examples, ISSUEMUT creates a mutator
(M3) that replaces the keyword extern with the keyword static.

2.2.2  Mutator Creation. The following simplified code snippet

implements mutator M17 as an Clang AST visitor [60]:

// Mutator M17

class AddExternDeclaration ... {
std :: set <const FunctionDecl +> FunctionDecls;
// collect signatures of function calls
bool VisitCallExpr (CallExpr «Call) { ... }
// manipulate AST to introduce function declaration
// with extern keyword at the beginning of the file.
bool mutate() { ... } }

M17 is a context-sensitive mutator that needs to collect infor-
mation before mutating the code. But, in most bug reports that
we analyze, we find that mutators do not require contextual infor-
mation. In those cases, a sed-like approach is sufficient to create
mutators. Mutator M3 is an example of a context-insensitive muta-
tor. It is implemented with this generic bash script, passing “extern”
and “static” as parameters PATTERN and REPLACEMENT, respectively:
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Figure 1: The workflow of IsSUEMUT’s mutator miner.

#!/bin/bash

FILE=§1

PATTERN=$2

REPLACEMENT=$3 ...

# Replace a string matching regex S$PATTERN with
# string SREPLACEMENT at line In in file S$FILE
sed -i -E "${In}s/$PATTERN/$REPLACEMENT/" $FILE

2.2.3 Summary. ISSUEMUT mines 587 mutators from GCC and
LLVM bug histories. We configured the SoTA mutational compiler
fuzzer METAMUT [44] with these mutators and systematically ap-
plied them using 35,472 seed test cases drawn from GCC and LLVM.
IsSsUEMUT mutators discovered 78 crashes, 64 of which METAMUT
mutators miss.

3 Approach

We describe each component of IsSSUEMUT in more detail. §3.1
describes IsSUEMUT’s automated miner that obtains mutators from
bug reports. §3.2 describes IsSUEMUT’s fuzzing framework.

3.1 Mutator Mining

Figure 1 shows the workflow of IssUEMUT’s mutator mining. We
describe each of the steps in the following.
3.1.1 Scrape positive test case and issue data (@). We write scripts
to scrape test cases from fixed and closed issues created in the
period from January 2023 to October 2024 (22 months). We chose
this window to prioritize recency, but IsSUEMUT is not tied to this
period and can be applied to longer histories. A total of 1457 and 303
candidate issues from GCC and Clang, respectively, satisfy these
criteria. For each candidate issue, we automatically execute the
associated test on a recent version of the corresponding compiler
and discard tests that still trigger crashes. This step ensures that
any newly observed crashes during fuzzing can be attributed to our
mutators rather than known regressions. If the original test already
triggers a crash in a recent compiler version, mutating that test
could trivially rediscover the same failure and artificially inflate
our measurement of mutator effectiveness. If no crash is detected,
this step reports a pair of issue and associated test case as output.
We say a test case is “positive” because it triggers a bug in a pre-
vious compiler version; the presence of an issue associated with
the test demonstrates that ability. We say a test case is “negative”,
otherwise. Figure 2a shows a fragment of a GCC bug report, in-
cluding the affected compiler component (tree-optimization), the
bug consequence (ice-on-valid-code), the bug-revealing test file
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Product: gcc

Component: tree-optimization
Keywords: ice -on-valid -code ...
$ cat zl.c

static int vfork ();

void f() { vfork(); }

$ gec-13-20230115 -c zl.c -02
during GIMPLE pass: cddce
zl.c: In function 'f':

### FILE ###
### FILE ###

z1.c:2:1: internal compiler error: in \
eliminate_unnecessary_stmts, at \
tree -ssa-dce.cc:1512
2 | void f() { vfork(); }

‘ ANmn

0xe0f0dc eliminate_unnecessary_stmts

../../ gee/tree -ssa-dce.cc:1512...
Oxelle55 execute

../../ gcc/tree -ssa-dce.cc:2069
(a) Issue metadata and stack trace. A valid input (z1.c) reveals an
Internal Compiler Error (ICE) during an optimization step in GCC.
When we have static declaration without definition we diagnose that
and turn it into an extern declaration. That can alter the outcome

of maybe_special_function_p here and there is really no point in
doing that, so do not.

(b) Relevant fragment of the issue discussion.

# positive test case # negative test case
static int vfork (); extern int vfork ();
void f() { vfork(); } void f() { vfork(); }

(c) Positive and negative test cases.

Figure 2: Fragment of bug report [15] and corresponding positive
and negative test cases.

(see “### FILE###”), and a stack trace fragment. Figure 2b shows a
portion of the discussion explaining the bug.

3.1.2  Extract negative test case (@). This step produces a negative
test case from a given pair of issue and a positive test case that
is mined from @. For example, if the issue indicates that adding
__attribute__((noipa)) reveals a bug when used in a function, the
negation of that positive test case removes that attribute. We use
an LLM to solve this task, due to its ability to handle text and code.
We use GPT-40 mini [42] because we find it to offer a reasonable
trade-off between accuracy and cost. To optimize the prompt engi-
neering process, we employed PromptPerfect [17], an Al prompt
optimization tool designed to enhance the quality of LLM outputs.
The optimized prompt we obtain was:

You are an experienced C developer. Your task is to read a bug
report and corresponding bug-revealing input and produce a similar
input that does not manifest the bug. The response should only
include the description of the mutation and the mutated C code.

###Bug Report:
###Bug-revealing Input:

Figure 2c shows an example of a negative test case (simplified
for clarity) for the corresponding issue and positive test case.
3.1.3 Validate negative test case (®). We manually check if the
negative test case compiles and if it is consistent with the issue
description. If the negative test case does not reflect the issue, we
repeat the query in ® with another LLM- Claude or 01-mini. We
discard the issue if we cannot validate the test case. A test case can
have multiple negative variants, similar in different ways to the
positive test cases and not bug triggering. IsSUEMUT only requires
one that reproduces the issue. Indeed, different negative tests can
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produce different mutators; quantifying the sensitivity of to this
choice is left as future work.

3.1.4  Generate mutators (®). This step creates mutators for a pair
of positive and negative test cases. A mutator is a function that
identifies target locations and changes the code at one or more
of those locations. We empirically find that most mutators are
context-insensitive, i.e., they check preconditions at the change
location (see §2.2.2). Based on this observation, we developed an
automated pipeline that generates mutators by deriving sed-like
transformations from positive and negative test case pairs. More
precisely, IssUEMUT automatically creates mutators that transform
a negative test case into the corresponding positive one. We use a
LangChain-based [6] agentic architecture powered by the Gemini
2.5 Pro model. The architecture is based on three agents:
Mutator Creator. This agent performs three tasks to create a script
for a mutator: Generalize Mutation, Generate Tests, and Create Script.
First, the task Generalize Mutation reverses the description of how
the LLM mutates a positive test case into a negative test case, as
obtained in step @, and removes the specific parts from the descrip-
tion (e.g., literals). For example, given LLVM issue #113692 [29], the
agent first reverses the mutation description “Changed the inline
assembly constraint from +f to +x to use SSE registers instead of
the x87 floating point stack..”, and then generalizes it to obtain
the description: “Change an inline assembly constraint from one
that uses an SSE register to one that uses the x87 floating point
stack” Second, the task Generate Tests generates a given number
(3 default) of test cases (i.e., C code input-output pairs) to validate
the mutation description, i.e., to ensure the mutator works beyond
the original negative-positive input pair. This step is crucial to cre-
ate generalizable mutators and prevent “overfitting”. For the issue
above, an example test case pair is:

void func(float a) { __asm__("fsqrt" :
void func(float a) { __asm__("fsqrt" :

"+x"(a)); } // input
£ (a))s } // output

Third, the task Create Script synthesizes a generic sed-based bash
script from a mutation description. We use the template command
sed—i-E's/<r>/<s> /g <file>, which replaces all strings
matching the regular expression < r > with the string < s > in the
input < file >. Our artifacts contain the prompt [48] that this agent
uses to obtain a bash script.
Mutator Validator. This agent validates the mutator script by
running it against all test cases, i.e., the original test case (§3.1.1
and §3.1.2) and the additional test cases (task “Generate Tests”).
Recall that a test artifact is an input-output pair of C code. So,
testing consists of checking whether running the script on the
input produces the expected output. The validator agent produces
one of four outcomes for a mutator: (1) Correct - all 4 test cases
pass, resulting in a finalized mutator; (2) Partially Correct - 3 out
of 4 test cases pass; (3) Error - the execution of the test harness
-not a test- fails; (4) Wrong - passes in fewer than 3 test cases. We
report a mutator if the agent labels it as “Correct” or “Partially
Correct”. We trigger a refinement step when observing the “Error”
and “Wrong” outcomes. More precisely, we send the corresponding
error message and test output diffs to the “Mutator Refiner” agent
along with the request to refine the mutator.
Mutator Refiner. This agent refines likely invalid mutator scripts
using the error messages obtained during the validation step. The
refiner agent iterates until the script can pass on the majority of
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the tests or until it reaches five iterations. Our artifacts include the
prompt [49] that the Mutator Refiner agent uses to refine a bash
script. For the LLVM issue #113692 [29], the final mutator script is:
#1/bin/bash

FILE=$1

PATTERN=""\+x"(\s +\([*)]+\)) '

REPLACEMENT=""\+ f"\1 '

sed -i -E 's/SPATTERN/$REPLACEMENT/ ' $FILE

For the few cases where contextual information is necessary to
transform the code, we use Clang’s AST visitors [60], like META-
Murt. §2.2.2 shows a simplified version of a bash script and AST
visitors that we use to implement these mutators. It is worth noting
that syntactic duplicates can arise when creating mutators. We look
for duplicates by searching for hash collisions in a hash table. We
compute a hash for a mutator by applying the mutator on a random
sample of our seed inputs representative of the entire seed corpus
with 99% confidence and 1% margin of error [57]. We apply a muta-
tor on each of these inputs and use the sha256sum UNIX command
to obtain an aggregate hash from the outputs. We find a total of 16
duplicate mutators (14 from GCC and 2 from LLVM). We exclude
these 16 from those that we mine. Of the 587 (=603-16) mutators
that remain, 412 are from GCC and 175 are from LLVM. There is
no fundamental reason for this imbalance; it only reflects that we
started our experiments with GCC. In the rest of this paper, we use
bhis (bug history) to refer to this set of 587 mutators.

3.2 Enhanced Mutational Fuzzer Framework

Generational fuzzers create inputs anew, whereas mutational
fuzzers modify existing inputs [70]. We focus on mutational fuzzing
due to its ability to efficiently create variations of existing inputs. In
compiler testing, inputs are self-contained code snippets. A muta-
tional fuzzer randomly applies mutations to files present in a queue,
initialized from a seed corpus. The seed corpus that we use includes
all test cases from GCC [58] and LLVM [61]. Fuzzing stops after a
time budget. It is worth noting that many recent mutational fuzzers
use coverage to drive fuzzing. Coverage-guided fuzzers (CGF) save
mutations that uncover new branches [59] of a program under test
in its queue for additional fuzzing.

We integrate our mined mutators into recently-proposed SoTA
mutational fuzzers, METAMUT [44] and KITTEN [66]. METAMUT is
a coverage-guided mutational fuzzer of C programs that revealed
bugs in GCC and LLVM. KITTEN is a language-agnostic mutational
fuzzer that has been shown to reveal bugs in C compilers.

METAMUT mutators use abstract syntax tree (AST) visitors [47]
to transform C files. As of now, METAMUT only checks for crashes,
but there is no fundamental reason METAMUT could not be adapted
to detect other kinds of bugs, such as miscompilations through
differential testing [35]. We use the stacktrace-based procedure
provided in METAMUT to de-duplicate alarms raised during our
fuzzing campaigns. That procedure considers the top two stack
frames, including the program counter and ignores helper functions.

4 Evaluation

Research Questions. Our evaluation addresses four questions:

RQ1. How do IssUEMUT mutators improve SoTA mutational
fuzzers?

RQ2. How do IssuEMuT and METAMUT mutators differ?
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RQ3. How beneficial is fuzzing with only successful mutators, com-
pared to fuzzing with all mutators?
RQ4. How useful are the bug reports of IsSUEMuT?

The first question investigates the impact of IsSUEMUT mutators
on SoTA mutational fuzzers (e.g., METAMUT and KITTEN) in terms
of coverage and ability to reveal bugs. The second question makes
an in-depth comparison between IssUEMUT and METAMUT muta-
tors quantitatively (e.g., crashes over time) and qualitatively (e.g.,
static and dynamic characteristics). The third question evaluates
the benefits of restricting the set of mutators in a fuzzing campaign
to only include mutators that previously triggered crashes. Intu-
itively, using fewer mutators can lead to more efficient exploration.
The fourth question evaluates the usefulness of the bug reports we
submitted as a result of using IssuEMuT mutators for fuzzing.

4.1 Baselines

Our primary comparison baseline is METAMUT [44], a recently-
proposed SoTA mutational fuzzer that is extensible with user-
provided mutators; it (i) achieves 5.4% and 6.1% higher code
coverage than leading generational and mutational compiler
fuzzers, respectively, (AFL++ [12], Csmith [67], YARPGen [27], and
GrayC [10]) and (2) detects three times more unique crashes than
these tools. METAMUT uses LLMs to create mutators within a space
of possible actions (e.g., Add) and program elements (e.g., Expres-
sion). METAMUT provides two sets of mutators that differ based
on whether human supervision is used to obtain them: mu.s and
mu.u. The set mu.s (supervised) includes 68 mutators obtained
through interactions with GPT-4 [43]. METAMUT authors created
these mutators by analyzing, debugging, and validating the gen-
erated AST-based mutators (§2.2.2). They refined LLM prompts
throughout this process, and considered prompts to be fully refined
after roughly two weeks. After that, they ran their workflow with-
out human supervision for 100 iterations using the same GPT-4
model and obtain another set of 50 mutators, referred to a mu.u
(unsupervised). We compare these two sets of METAMUT mutators
with IsSUEMUT mutators (see RQ2, §4.4).

Our secondary comparison baseline is KITTEN [66], a SoTA
language-agnostic grammar-based mutational fuzzer with support
for C. We consider KITTEN as a secondary baseline because its
generic design makes it less directly comparable to IsSSUEMUT than
METAMUT. Our mined mutators derive from C compiler bug histo-
ries and target C-specific constructs, aligning them more closely
with METAMUT, which is also a mutational fuzzer specialized for
C. KiTTEN performs tree-level mutations (splicing, replacement,
deletion, and repetition) on parse trees and performs token-level
mutations (insertion, deletion, and replacement) on token sequences
from seed programs to generate syntactically valid and invalid test
programs for compiler testing.

Section 5 also reports on a lightweight comparison against
Fuzz4ALL [65]. It is worth noting that Fuzz4ALL requires GPUs to
generate files whereas METAMUT and KITTEN only require CPUs.

4.2 Setup

We run experiments on an Ubuntu 22.04.5 LTS DELL PowerEdge
R6625 server, equipped with two 96-core AMD EPYC 9684X pro-
cessors and 755 GB of memory. As in prior work on compiler
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Figure 3: Comparison of METAMuUT and METAMUT-1.

fuzzing [44], we focus on the —02 optimization level. For the sake
of reproducibility, we run experiments on two fixed recent compiler
revisions: GCC 15 (87492fb) and Clang 20 (9bdf683). But, we report
bugs in the most recent revisions of these compilers. To account for
inherent nondeterminism, we run each experiment multiple times
using fixed random-number generation seeds. Applying mutators
to seed programs can generate invalid programs; we consider a
program valid if it compiles successfully, and across our evaluation
runs the average compilation success rate is 71.2% (METAMUT re-
ports a compilation success rate of 72%). Since production compilers
should reject invalid inputs gracefully with diagnostics rather than
crash, we treat crashes on invalid inputs as robustness failures.

4.3 Answering RQ1

We report the impact of IsSUEMUT mutators on two SoTA muta-
tional fuzzers, KITTEN and METAMUT. We augment METAMUT and
KiTTEN with mutators mined by IssUEMUT, and call the resulting
variants METAMUT-I and KITTEN-I, respectively. For fair compari-
son, we use the same seed corpora across all techniques. For crash
analysis, we use METAMUT’s crash deduplicator to identify unique
crashes across all techniques.

We present the results for METAMUT-I in §4.3.1 and for KITTEN-
I in §4.3.2. We report METAMUT and KITTEN separately because
they exhibit intrinsic differences in input generation efficiency due
to their fundamentally different fuzzing strategies. METAMUT’s
coverage-guided approach improves its exploration efficiency but
limits the number of files it generates. But, KITTEN’s grammar-based
approach generates more inputs as it does not rely on coverage feed-
back. Separate evaluation allows us to isolate and study the impact
of IssuEMUT mutators on these two distinct fuzzing paradigms.

4.3.1 METAMUT vs. METAMUT-1. We augment METAMUT with all
587 mutators mined by IsSSUEMUT, resulting in a variant that we
call METAMUT-I. For fair comparison, we allocate 30 physical cores
each to METAMUT and METAMUT-1. We use METAMUT’s parallel
setting to run 30 agents in parallel (-j 30), and run METAMUT and
METAMUT-I five times each, with each run taking 24 hours.
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Figure 4: Comparison of KITTEN and KITTEN-I.

Figure 3 compares METAMUT and METAMUT-1, showing how
IssuEMUT’s mutators impact coverage and bug-discovery effec-
tiveness. In Figure 3a, we see that the branch coverage difference
between METAMUT and METAMUT-1 is negligible. This is expected:
both variants are coverage-guided. In contrast, Figure 3b shows
that the bug-discovery effectiveness of both variants differs sub-
stantially. There, METAMUT-1 reveals an average of 93.2 crashes
after 24 hours, whereas METAMUT reveals only 49.0 crashes — a
difference of up to 1.9X. The Venn diagram in Figure 3b also shows
that METAMUT-I discovers 77 unique crashes, which far exceeds
the 19 unique crashes found by METAMUT.

4.3.2  KiTTeEN vs. KiTTEN-1. KITTEN-1 augments KITTEN with 20
mutators from IsSUEMUT (out of 587). Unlike METAMUT, which
directly supports retrofitting mutators, KITTeEN lacks such infras-
tructure, and its AST representation differs from Clang’s AST used
by IssuEMuUT mutators and METAMUT. Incorporating all mined
587 mutators into KITTEN would therefore require substantially
more engineering effort than it took us for METAMUT. To make
the comparison feasible, we randomly select and implement 20
mutators into KITTEN. We use the default KITTEN setting, and run
both KiTTEN and KITTEN-I on a physical CPU core. Also, we run
KiTTEN and KITTEN-I 50 times each, with each run taking 8 hours.

Figure 4 compares KITTEN and KITTEN-1, showing how IsSuE-
MuTt’s mutators impact coverage and bug-discovery effectiveness.
Figure 4a shows that KITTEN-1 achieves a marginally higher branch
coverage than KiTTEN for GCC and LLVM. By augmenting KITTEN
with 20 IssuEMUT mutators, KITTEN-I exposes additional execution
paths, as reflected in its higher branch coverage. The progress plot
in Figure 4b shows that after 8 hours, KITTEN-1 reveals an average of
14.22 crashes, compared to only 7.98 for KITTEN, corresponding to
an improvement of up to 1.78X. The Venn diagram in Figure 4b also
shows the advantage of KITTEN-I: it discovers 43 unique crashes
that KiTTEN did not, more than three times the 13 crashes that
KiTTEN (but not KITTEN-1) finds. A paired t-test confirms that the
improvement is significant (p < 0.001), with a 95% confidence in-
terval of [5.45, 7.03] crashes. The effect size (Cohen’s d = 2.23) also
shows a large practical impact of ISSUEMUT’s mutators in KITTEN-1.
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RQ1 (Enhancing SoTA)

METAMUT-I and KITTEN-I outperform their baseline SoTA vari-
ants (METAMUT and KITTEN) w.r.t. number of unique bugs
found. After 24 hours, METAMUT-I finds 58 more crashes than
METAMUT (77 vs. 19). Similarly, after 8 hours, KiTTEN-I finds
30 more crashes than KITTEN (43 vs. 13). More importantly,
METAMUT-I and K1TTEN-I find many crashes that these base-
line variants miss.

4.4 Answering RQ2

We assess how IssuEMuUT and METAMUT mutators compare from
different angles: static (§4.4.1), dynamic (§4.4.2), crashes over
time (§4.4.3), crash uniqueness (§4.4.3), and crash diversity (§4.4.4).

We compare IsSUEMUT and METAMUT mutators by running
fuzzing campaigns with METAMUT configured under three mutator
sets: METAMUT mutators (mu.s and mu.u) and IsSSUEMUT mutators
(bhis). For this experiment, we used the setup from Section 4.3.1,
i.e., we allocated 30 physical cores to each fuzzing technique, and
ran five times for 24 hours.

4.4.1 Static Characteristics. We focus on two characteristics of a
mutator: the kind of change it makes (e.g., code addition) and the
program elements it manipulates (e.g., expression).

Our artifacts include a list of IssUEMUT mutators that contributed
to expose at least one crash [39]. Table 1 shows a representative
list of ten IssUEMUT mutators that contributed to revealing at least
three bugs. Column “Id” is the identifier of a mutator, “Src.” shows
the compiler targeted by the mutator (G=GCC or L=LLVM), “Ac-
tion” and “Program Element” indicate, respectively, the transfor-
mation and the target program element for that transformation,
and “Description” is a short description of the mutator. The symbol
* denotes mutators related to the recent C23 standard [21].

Figures in our artifacts [37, 38] show, respectively, the distribu-
tions of transformations and target program elements for successful
IssueEMuT and METAMUT mutators. Figure [37] indicates a discrep-
ancy in the proportion of actions between these two mutator sets.
IssuEMUT mutators most often add, modify, or delete program ele-
ments. In contrast, most METAMUT mutators perform modifications.
Figure [38] further shows that some groups of program elements
are targeted by only one of the techniques, i.e., their corresponding
mutator sets. We attribute these structural differences to how META-
MuT and IsSUEMUT create mutators. ISSUEMUT derives mutators
from bug histories, while MetaMut relies on an LLM and focuses on
specific AST elements to reduce task definition scope in prompts.
Consequently, the two approaches produce mutators with distinct
structural characteristics. Syntactically, sSUEMUT mutators often
involve multiple edits, reflecting changes in positive-negative pairs,
e.g., one mutator may introduce a new variable declaration and
then assigns a type-compatible value to that variable. In contrast,
METAMUT mutators perform single edits as they are generated from
an LLM prompt with only one mutation verb and one AST target.
As a result, IssuEMuT and METAMUT mutators differ both in the
actions they perform and in the program elements they manipulate.

Beyond these syntactic differences, we also observe semantic dif-
ferences between the two approaches. Because [sSSUEMUT is sourced
from real-world bug histories, its mutators reflect the recency of
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Figure 5: Dynamic characterization.

language evolution; for example, several successful ISSUEMUT mu-
tators manipulate constructs introduced in the recent C23 standard
(e.g., M8 and M9 in Table 1). The generality of LLMs sometimes
causes them fail to accurately prioritize recency.

4.4.2 Dynamic Characteristics. We further compare IsSSUEMUT
with METAMUT by considering the number of crashes they re-
veal and examining the lengths of the mutation chains associated
with the detected crashes. The histograms from Figure 5a show the
number of mutators (y-axis) that reveal a given number of crashes
(x-axis). For example, eight of IsSUEMUT’s mutators reveal three
crashes. Results indicate that, a higher number of mutators mined
with IsSUEMUT reveals more than one crash compared to METAMUT
(mu.s and mu.u combined).

Figure 5b compares the lengths of IssuEMuT and METAMUT mu-
tation sequences that produce crash-triggering inputs. It is worth
noting that to measure the length of such chains we minimize mu-
tation sequences aposteriori. Results indicate that the vast majority
of crash-triggering inputs (int(100%(69 / 78))% in IssuEMuUT and
int(100*(61 / 74))% in METAMUT) are produced by a single muta-
tion. The presence of crashes triggered using inputs resulting from
multiple mutations indicate that (i) one mutation increased com-
piler coverage so the file was added to the queue; and (ii) the other
mutator changed that file in a way that triggered a crash. Note that
all three mutator sets (two from METAMUT and one from ISSUE-
Mur) perform one mutation at a time, like in first-order mutants in
mutation testing [23]. But, the fuzzing campaign can apply multi-
ple mutations in subsequent steps, like in high-order mutants [22].
Overall, results indicate that IsSUEMuT and METAMUT mutators
have similar dynamic behaviors: most successful mutators trigger
a single crash and most crash-triggering inputs result from one
mutation.

4.4.3 Coverage and Crashes Triggered over Time. Figures 6a and 6b
show the trends in coverage and crashes detected over time for each
set of mutators, namely bhis, mu.s, and mu.u. From Figure 6a, we
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Table 1: Representative list of mutators revealed more than three crashes from IsSUEMUT. x =C23 standard

X3 - Attribute [@=Builtin function [} :Unari Operator [g¥=Function Declaration [i#lJ=Literal Jill=Initialization i@l]=Parameter [Ell=Expression

[ -Storage Class Specifier Jlll=Statement

=Type KiQ)=Variable Declaration [Jgll=Character

Id Src. Action Pgm.Elements Description
M1 G Add Adds built-in function __builtin_assoc_barrier() around the return expression.
M2 G Sweg) E Swaps two arguments of function calls.
M3 G Modify Sc Replaces extern storage class specifier with static.
M4 G Remove Uo Removes a type cast operator.
M5 G Modi{y Replaces const pointer parameters with non-const non-pointer parameters.
M6 G  Modify Replaces a variable reference with a call expression.
M7 L  Remove Removes the size expression from an array variable declaration.
M8 L  Modify [ L ] * Replaces integer literals with a large numeric value using a new integer literal suffix. (e.g., changing 123 to
66666...wb (The wb suffix is a bit-precise integer literal suffix introduced in the C23 standard)).
M9 L  Modify * Replaces integer zero literals into binary zero literals, which is introduced in the C23 standard (e.g., 0b0).
M10 L  Add Adds __attribute__ ((target_clones(”default,avx”))) to function declarators.
I T S Table 2: Kinds of crashes and their distribution across modules.
5 300 5 300
£ \ . IssuEMuT METAMUT
[ Clang ~ GCC  Clang  GCC
, — muu , " — muu Kind
S e s T w7 Segmentation Fault 5 7 4 2
Assertion Failure 33 14 41
(a) GCC and LLVM coverage. Hang 0 0 1 0
o Internal Compiler Error 2 17 3 16
© o s 34 Affected compiler modules
* Front-End 14 8 20 10
g IR Generation 16 17 20 5
o Optimization 6 9 2
Back-End 7 10
nEe s e v o i s s a7 00 0 2 2 2 Assertion Failures and Internal Compiler Errors (ICE) are more com-
bhis mu.s B mu.u . .
mon than hangs or segmentation faults. The proportions of these

(b) Differences in bugs revealed by techniques.
Figure 6: Progress of crash detection over time (left) and differences
of crashes each mutator set detects (right).

find that differences in branch coverage are negligible, indicating
that the mutator sets explore comparable code regions. However,
Figure 6b (right) shows that a substantial number of unique crashes
were discovered by ISSUEMUT mutators, suggesting that IssuEMuT
mutators guide the fuzzer toward distinct bug-revealing execution
paths. The shaded areas in the progress plot on Figure 6b (left) repre-
sent the 95% confidence interval of the distributions of crashes at a
given point in time. It is worth noting that crashes are deduplicated
on each run to avoid inflation of results. On average, ISSUEMUT’s
mutators reveal more crashes (64.0, on average) over time when
compared to METAMUT’s mutator sets (37.0 and 24.6, on average).
We analyze the number of distinct crashes that each set of muta-
tors finds at the end of fuzzing campaigns. The venn diagram in
Figure 6b (right) shows the relationships among crashes found by
each mutator set. The diagram merges results by taking the union
of the observed crashes across the various runs of the fuzzer for
a given mutator set. To sum up, under 24 hours fuzzing budgets,
fuzzing with bhis (IsSUEMUT) mutators reveals several crashes that
mu.s and mu.u (METAMUT) miss 64 unique crashes in the union
of bhis-induced crashes. So, there is evidence that “bug history”
mutators complement and improve the bug-finding effectiveness
of SoTA mutators.

4.4.4 Diversity. Table 2 shows the kinds of crashes that IssuEMuT
and METAMUT find and their distributions across compiler modules.

classes of crashes are similar for IssuEMuT and METAMUT. Also,
crashes in the Front-End and in IR Generation are more common,
compared to others. IssuEMuT and METAMUT find bugs deeper in
the compiler stack, but they do so in lower numbers.

IssueMuT and METAMUT trigger crashes of different kinds and
in different modules. Overall, “bug history” mutators are distinct
compared to the set of mutators from METAMUT.

RQ2 (Distinction from SoTA mutators)

IssuEMuT and METAMUT mutators differ in various ways. They
trigger different crash types at different modules, showing that
bug-history mutators complement and improve the bug-finding
effectiveness of other mutator sets.

4.5 Answering RQ3

We evaluate the benefits of restricting the size of the set of mutators
used in a fuzzing campaign by including only “successful” ones:
those that previously triggered crashes. Intuitively, using fewer
mutators can cover more of the search space within a time budget.
Prior work explores strategies to calibrate exploitation-exploration
before [2, 46, 69]. We report on a limit study to exploit such success-
ful mutators. Such set includes 60 mutators from IssUuEMuT (listed
in our artifacts [39]) and 44 mutators from METAMUT.

Figure 7 shows the number of distinct crashes obtained after
merging runs across multiple seeds with union. The venn diagram
shows the differences in crashes found by each mutator set: bhis,
mu.s, mu.u, and successful (104 mutators from all three sets). The
fuzzing campaigns with “successful” mutators triggers 20 crashes
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bhis mus B muu successful

Figure 7: Comparison between fuzzing with bhis , mu.s , mu.u muta-
tors and fuzzing with successful mutators (104).

that are not triggered by any other campaign. Of these, 6 crashes
are due to ISSUEMUT’s mutators alone: 5 in LLVM (149368, 149369,
149371, 149372, one does not crash on trunk), and 1 in GCC (119177).
As expected, the campaign with only “successful” mutators also
reveals crashes faster. Figure 7 shows the progress of crashes trig-
gered over time. For example, at the 2-hour mark, fuzzing with only
“successful” mutators triggered an average of 50.8 distinct crashes.

RQ3 (Fuzzing with only “successful” mutators)

Running fuzzing campaigns with only “successful” mutators
is beneficial: the focused campaign (i) triggers 20 crashes not
triggered by campaigns that use all mutators (mu.s, mu.u, and
bhis) in an 24 hours time budget; and (ii) triggers crashes faster.

4.6 Answering RQ4

We report on the ability of IsSSUEMUT’s mutators to reveal bugs
(as opposed to crashes). The bug reporting process spanned sev-
eral months as we iteratively improved IssuEMuT by adding mu-
tators. Throughout this process, we conducted multiple fuzzing
campaigns to evaluate IsSUEMUT’s bug-finding ability. We reported
bugs immediately upon discovery and ensured that newer versions
consistently found a superset of crashes from prior campaigns. To
contextualize our findings, compiler testing researchers report var-
ious numbers of bugs in their studies. For example, GrayC [10]
evaluated their approach on GCC, LLVM, MSVC, and Frama-C.
Considering GCC and LLVM alone (i.e., the two compilers that we
use), they found, respectively, 11 and 10 bugs that were confirmed
and fixed by compiler developers.

For bug reporting, we use all 78 crashes from the set bhis, repre-
sented in the venn diagram from Figure 6b (merged with union).
Our artifacts show a list of all bugs we reported to developers [4]. Of
these, int(27 + 25) bugs were only found by bhis mutators. Table 3a
lists bugs that LLVM and GCC developers fixed. Column “Id” shows
bug identifiers in the corresponding bug-tracking system, “Status”
is the status of the bug report at the time of writing, and “Mutators”
shows the number of mutators that contributed to finding the bug.
For the “Mutators” column, once we detect a crash, we identify the
length of the chain of mutations that produced the crash-triggering
input and manually eliminate mutations that are unnecessary for
crash reproduction. The notation “M; @ M,” indicates that we can
reproduce a bugx by applying M; or M, to a seed file. The artifacts
show examples of bugs that require a sequence of mutations. High-
lighted rows in Table 3a indicate bugs that only bhis mutators find,
i.e., a subset of the 64 unique crashes from Figure 6b.
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Table 3: Reported bugs.

(a) Fixed bugs reported with IssueMuT. Highlighted rows indicate
crashes that only IssueMuT finds. The full list of bugs reported can
be found elsewhere [4].

LLVM bugs
1d Status Mutators
118892 Fixed M5 & M6
123410 Fixed M3
144771 Fixed M4
149023 Fixed M6

GCC bugs

Id Status Mutators
118061 Fixed M11 & M18 @ M14 @ M23
118674 Fixed M2
118868 Fixed M1
118948 Fixed M54
119001 Fixed M7
119204 Fixed M30
121127 Fixed M37
121130 Fixed Mé6
121131 Fixed M45;M20

(b) Summary of reported bugs.

C Compiler ~ Reported Confirmed Duplicate  Fixed

LLVM 37 27 6 4
GCC 28 11 3 9
z 65 38 9 13

Table 3b shows a summary of the reported bugs, indicating the
current category of the report. Note that we report fewer bugs com-
pared to the number of crashes we observe: 78 (=64+8+4) crashes
observed versus int(37 + 28) bugs reported. The reason for the dif-
ference is that we only report bugs that we can reproduce in the
most recent compiler release. It is also worth noting that we find
duplicate bugs. As in prior work [26, 44], we mention these bugs
here as we could get credit if reported earlier. Overall, results show
that (i) int(100%(31 / 587))% of IsSUEMUT’s mutators revealed at least
one bug; and (ii) developers confirmed or fixed majority of our bug
reports.

RQ4 (Usefulness of crashes for bug finding)

Developers acknowledged 60 (confirmed, fixed, or duplicate)
out of int(37 + 28) bugs that we report in LLVM (37) and
GCC (28). Of these, int(27 + 25) are uniquely manifested with
IsSUEMUT, i.e., the two METAMUT’s mutator sets missed them.

It is worth noting that METAMUT’s authors report bugs in a
longitudinal study, i.e., across several compiler versions and over
several months. A side-by-side longitudinal comparison with META-
MuT considering number of bugs reported would be unfair and
unproductive as we would need to match compiler revisions and
METAMUT authors reported bugs in those revisions earlier, so bugs
could be already fixed as METAMUT’s authors accessed correspond-
ing revisions earlier.

4.7 Threats to Validity

The main threat to internal validity consists of the bias that we
might have inadvertently introduced in our implementation. To
mitigate that threat, we built ISSUEMUT by retrofitting their muta-
tors onto the METAMUT framework and KITTEN, our experiment
baselines. In addition, our approach relies on large language models
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to generate negative tests and mutators, which introduces the risk
of LLM hallucinations and model-specific behavior. We mitigate this
risk through a combination of manual and automated validation: all
LLM-generated negative tests are manually inspected against their
issue descriptions and discarded if deemed invalid, and all gener-
ated mutators are validated using an automatic mutator validator
that checks whether they preserve expected input-output behavior
on available test cases. To further assess robustness to changes in
LLM versions, we reran the pipeline on a small subset of issues
using more recent models (GPT-5.1 and Gemini-3) and observed
that the resulting negative tests and mutators passed validation and
closely matched the originals. The main threat to construct validity
is the stochastic nature of the result that could have favored our
results. To mitigate that threat we repeat our experiments multiple
times with random seeds. The main threat to external validity is the
selection of issues we selected. We follow a well-defined method to
assure that we only analyze bugs that have been already fixed.

5 Discussion

This section reports on a comparison against Fuzz4ALL, an evalua-
tion of mutators effectiveness across compilers, a discussion on a
sample of bugs we find, and lessons we learned.

5.1 Comparison with Fuzz4ALL [65]

Fuzz4ALL uses LLMs to generate inputs for fuzzing compilers and
other systems. Fuzz4ALL’s workflow has two stages. First, it uses
auto-prompting [52, 63, 74] to distill user-provided documentation,
examples, or specifications into prompts for querying an LLM. Then,
it implements a fuzzing loop that continuously generates inputs
iteratively, updating prompts with previously generated inputs and
using different strategies. Fuzz4ALL’s compute requirements differs
from IssueMuT’s. Fuzz4ALL runs on a GPU that fits the LLM, but
IssuEMUT runs on CPUs. So, a side-by-side comparison is impracti-
cal. Yet, given Fuzz4ALL’s recency and similar goal, we attempt to
replicate and compare its results with IsSSUEMUT mutators.

Setup. We run Fuzz4ALL using its author’s original setup in a 24-
hour fuzzing campaign, compared to ISSUEMUT’s 24 hours, on the
same compiler versions as IssUuEMuT: GCC (87492fb) and Clang
(9bdf683). Note that Fuzz4ALL’s original evaluation used older ver-
sions of these compilers, e.g., they use GCC 13, but we use GCC 15,
which is in development. We run Fuzz4ALL on an NCSA Delta A40
GPU node [40] with a 64-core AMD EPYC 7763 CPU, an NVIDIA
A40 GPU, and 128GB RAM, running RHEL 8.8. We repeat our 24-
hour campaigns 7 times each for GCC and Clang (including auto-
prompting) or a cap of one million generated inputs, whichever
comes first. In all experiments, we use the configurations in [65],
including using standard C library documentation as input, and the
Docker containers provided in the replication package.

Results. Fuzz4ALL produces 244,722 and 203,483 inputs for Clang
and GCC, respectively, which are close to the numbers in [65]
(e.g., their five 24-hour GCC campaigns produce 260,221 inputs).
Our Fuzz4ALL campaigns collectively triggered 11 crashes: 7 in
Clang and 4 in GCC. Our analysis shows that (i) 9 of these 11
crashes are unique; and (ii) 4 of 9 unique crashes were also triggered
by IssUEMUT (§4.4). We leave as future work the investigation of
how Fuzz4ArL performs in other revisions of GCC and LLVM,
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and the effects of incorporating Fuzz4ALL’s generated inputs into
METAMUT’s seed corpora.

5.2 Within-compiler vs. cross-compiler effects

We evaluate the effects of muta-
tors originated from a compiler
in a different compiler. Among
our reported bugs, we find that
15 out of 37 LLVM bugs (~40%)

Table 4: Effectiveness of mu-
tators across compilers.

Source Target Avg. crashes

GCC  GCC 2.25
are exposed by mutators sourced GCC LLVM 125
from GCC bug reports, and 9 out LLVM LLVM  6.00
LLVM GCC 5.25

of 28 GCC bugs (=32%) are ex-
posed by mutators sourced from
LLVM bug reports, which suggests meaningful cross-compiler gen-
eralization. To further isolate within-compiler and cross-compiler
effects under a controlled budget, we conduct a small-scale ablation
study. We sample 100 mutators derived from GCC bug reports and
100 mutators derived from LLVM bug reports, and apply them in
the four settings defined by the cross product of mutator source
{GCC, LLVM} and target compiler {GCC, LLVM}. For each setting,
we run IssuEMUT for 8 hours using 10 CPU cores, resulting in four
runs in total. Table 4 summarizes the results of our small-scale
ablation. Across both within-compiler and cross-compiler settings,
mutators sourced from GCC and LLVM consistently trigger com-
piler crashes under the same testing budget. To sum up, results
show that mutators remain effective when used across compilers,
although their effectiveness varies.

5.3 IssueMur-triggered bugs sample

LLVM bug #123410. This Issue-
Murt input triggers a crash in Clang.
The crash occurs because mutator
M3 [39] (Figure 1) replaces the
extern keyword with static, chang-
ing the behavior of functions in immintrin.h. Developers fixed
the bug, saying, “Seems we missed to add AMX FP8 intrinsics into
X86LowerAMXType.cpp’.

#include <mm_malloc.h>
- #define extern
+ #define static
#define
#include <immintrin.h>

__inline

#include <stdint.h>

LLVM bug #120086. This struct A { char il1; };
: ; - int printf(const char «fmt, ...);
input also triggers a crash s int printf(char fmt )

in Clang. The crash occurs
because applying mutator
M5 [39] results in an undeclared printf function and an assertion
failure during LLVM IR generation for _ builtin_dump_struct().
(M5 replaces a type with char while transforming negative to posi-
tive test cases.) LLVM developers confirm this as a regression: ...
git bisect points to this commit that caused the regression: ef395a4...We
really should land a fix ASAP, this is now three regressions linked to
the same change”.

GCC bug #118868. This input triggers a crash in GCC:

void test(struct A »a) {

__builtin_dump_struct(a, printf);}

#include <stdlib .h>

void «wrapped_malloc(size_t size) {

- return malloc(size); }

+ return __builtin_assoc_barrier (malloc(size)); }

The crash occurs because applying mutator M1 [39] causes a failure
to validate the correctness of generated GIMPLE IR. (That mutator
wraps return expressions in a call to __builtin_assoc_barrier().)


https://github.com/gcc-mirror/gcc/commit/87492fb3fd5e7510983e0275a38ba95769335018
https://github.com/llvm/llvm-project/commit/9bdf683ba6cd9ad07667513d264a2bc02d969186
https://github.com/llvm/llvm-project/issues/123410
https://github.com/llvm/llvm-project/issues/120086
https://github.com/llvm/llvm-project/commit/ef395a492aa931f428e99e1c0a93d4ad2fb0fcfa
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118868
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GCC developers confirmed the bug, saying, “the ICE (Internal Com-
piler Error) started happening since r12-1608-g2f1686ff70b25f” So, the
bug had been in GCC for over three years.

GCC bug #119001. This input also triggers a crash in GCC:

union U4 {

- char a[4];
+ char a[];

int i; }; const union U4 u4[2] = {{"123"}};

The crash occurs because applying mutator M7 [39] revealed miss-
ing initialization. (That mutator removes literal array size in array
declarations.) GCC 15 —under development— adds support for flex-
ible array members in unions, but does not correctly handle their
initialization in arrays of unions. Developers fixed the bug, saying
“r15-209 allowed flexible array members inside unions, but as the test
case shows, not everything has been adjusted.”.

5.4 Lessons Learned

We list actionable lessons that we learn from our IssuEMuT work:
(1) “Bug history” mutators find many bugs missed by mutators
obtained via other means, e.g., through program-agnostic transfor-
mations (§ 4.3) or LLMs (§4.4). So, we recommend finding more
of these mutators and to use them in existing mutational fuzzers;
(2) Most successful mutators reveal only one bug. Likewise, trig-
gering most bugs requires only one mutation (§4.4.2). Bounded-
exhaustive fuzzing [3] is a promising direction to explore all com-
binations of files and (single) mutations, so coverage would be
unnecessary, thereby accelerating compilation, the main bottle-
neck; (3) Identifying “hot” features is a promising direction for
bug hunting. For example, we find that mutators related to the
recent C23 standard were successful (§ 4.4.1); (4) Fuzzing with only
successful mutators is effective (§4.5). Developers could prioritize
successful mutators over others in evolutionary contexts;

6 Related Work

Generation-Based Fuzzing. Generational fuzzing methods test
compilers by generating inputs and checking properties on them
(e.g., absence of crashes). CSmith [67] generates random C pro-
grams that have successfully exposed hundreds of latent defects
across various C compiler implementations. Analogous to CSmith,
CCG [36] produces chaotic C89 code designed specifically to induce
compiler crashes through rigorous stress-testing. More recently,
YARPGen [27, 28] creates semantically diverse programs free from
undefined behavior, effectively addressing the saturation issue en-
countered with earlier generation tools such as CSmith [1]. Sev-
eral specialized generational-based fuzzers exist [5, 18-20, 51, 56].
Fuzz4All [65] is a generational LLM-based fuzzer for systems in
general. To sum up, generational fuzzers can produce seed corpora
for mutational fuzzers. Future work can evaluate such integration.
Mutation-Based Fuzzing. Mutational fuzzing methods test com-
pilers by modifying existing inputs. Orion [24, 24] introduced Equiv-
alence Modulo Inputs (EMI), a methodology that creates seman-
tically equivalent program variants with respect to specific input
sets. Athena [25] extends Orion’s capabilities by employing Markov
Chain Monte Carlo optimization to facilitate the deletion and in-
sertion of code into un-executed regions. Hermes [54] preserves
program semantics while mutating live code regions. Skeletal Pro-
gram Enumeration (SPE) [71] systematically enumerates all possible
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variable usage patterns within syntactic structure-based skeletons.
GrayC [10] implements coverage-guided mutation-based fuzzing
with semantics-aware mutation operators. KITTEN [66] proposes
program-agnostic transformations and a caching mechanism to
efficiently evaluate them. Differently from these approaches, which
rely on manually designed or heuristic-driven mutation operators,
IsSUEMUT extracts mutators from real-world bug reports using a
semi-automated approach. Recent work has explored leveraging
LLMs for mutational compiler fuzzing. ClozeMaster [13] applies
LLMs to infill masked regions of historical bug-triggering programs,
while LegoFuzz [41] synthesizes reusable code fragments that can
be strategically combined to construct test programs. ATLAS [64]
explores compilation space through strategic attribute insertion
into test programs. Unlike these LLM-based approaches, which
primarily apply LLMs to directly mutate or complete test programs
using historical bug information, ISSUEMUT mines reusable mu-
tators from bug reports and applies them across a seed corpus.
Other work applies LLMs to generate mutators for compiler testing.
METAMUT [44] synthesizes mutators using LLMs. Unlike METAMUT,
IssueMut mines mutators directly from real-world bug reports.
Mutation Testing and Bug Fixes. Tufano et al. [62] proposed to
mutate source code from bug fixes. Their idea is similar to ours but
the context is different. Their work is on mutation testing, which
focuses on evaluating test-suite quality. ISSUEMUT’s purpose is
fundamentally different: we focus on creating mutations that guide
the exploration of the mutational compiler fuzzing search space
towards areas that are likely to trigger bugs.

7 Conclusions

Ensuring reliability of compilers is an important problem. Muta-
tional fuzzers were recently shown to outperform several compiler
fuzzers, but their effectiveness depends on the availability of high-
quality mutators. We report on a comprehensive study showing
that bug histories are good starting points for semi-automated cre-
ation of effective mutators. Our study is supported by ISSUEMUT, an
approach and an enhanced fuzzer framework that we also propose.
IsSsUEMUT mines “bug history” mutators and retrofits them into
SoTA mutational fuzzers, METAMUT [44] and KITTEN [66]. ISSUE-
Murt finds many bugs that SoTA fuzzers miss. We share several
actionable lessons and plans for future work in this direction.

Data Availability

The artifacts of ISSUEMUT are publicly available:
https://github.com/ncsu-swat/IssueMut.
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