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Abstract

Runtime verification (RV) found many bugs by monitoring passing
tests in many open-source projects against formal specifications
(specs). But, RV is often too slow for use in continuous integration.
So, evolution-aware techniques were proposed to speed up RV
by re-monitoring only a subset of specs affected by code changes.
These techniques use coarse-grained class-level analyses, so they
can sub-optimally and imprecisely re-monitor unaffected specs.
We propose FineMOP to speed up evolution-aware RV by using
fine-grained analyses to re-monitor fewer unaffected specs. The key
idea is simple: changes often do not require re-monitoring specs
that are only related to unchanged parts of changed classes. We im-
plement six variants of three fine-grained analyses in FineMOP and
evaluate them on 1,104 revisions of 68 open-source Java projects.
Compared with two class-level techniques, FineMOP is up to 4.86x
faster, re-monitors up to 81.04% fewer specs per revision, and
finds 99.68% of all new violations that these techniques find. Also,
FineMOP and Regression Test Selection (RTS) are complementary:
combining FineMOP with RTS is faster than FineMOP or RTS alone.
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1 Introduction

Runtime verification (RV) [45, 60, 95] checks running programs
against formal specifications (specs). RV first uses instrumentation
to re-write a program to signal spec-related events (e.g., method
calls) at runtime. Then, while running the instrumented program,
traces—i.e., sequences of events—are checked using monitors that
are dynamically synthesized from specs. If a trace violates a spec, a
monitor performs a user-specified action, e.g., raising a warning.
RV of passing unit tests against specs of correct JDK API usage
now scales to thousands of open-source projects [38, 53, 68, 70, 85]
and helped find hundreds of bugs that testing alone missed. But,
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RV is often too slow for use in continuous integration (CI) [38]. So,
evolution-aware RV techniques were proposed to speed up RV by
re-monitoring only a subset of affected specs for which events can
be signaled from code impacted by changes [71, 73, 112].

Evolution-aware RV addresses two main challenges. First, time to
find and re-monitor affected specs must be less than time to simply
re-monitor all specs across many revisions. Occasional slowdown is
tolerable if most revisions see a speedup. Second, algorithms should
be safe—defined as finding all new violations after a change [73].

All prior evolution-aware RV techniques use coarse-grained
class-level analyses to find specs affected by changes [39, 73, 112].
So, these techniques can sub-optimally and imprecisely re-monitor
unaffected specs. Suppose class A has two independent methods m1
and m2, spec S1 has events only in m1 and spec S2 has events only
in m2. If only m1 changes, current evolution-aware RV techniques
correctly re-monitor S1, but they also imprecisely re-monitor S2.
Finer-grained method-level analysis of this change will re-monitor
only S1, thereby speeding up evolution-aware RV.

We propose FineMOP to speed up evolution-aware RV by us-
ing fine-grained analyses to re-monitor fewer unaffected specs.
Fine-grained analyses can be unsound or slower than class-level
ones [69]. But, two insights from recent fine-grained analyses for re-
gression test selection (RTS) [78, 115, 117] inspire FineMOP: (i) extra
time for fine-grained analysis is often offset by gains in lower end-
to-end time across revisions; and (ii) unsoundness of fine-grained
analysis is often mitigated by falling back to the class-level.

FineMOP embodies three fine-grained analyses: () MTHD rea-
sons about method-level changes; @) HYBRID also reasons about
method-level changes, but falls back to the class level if doing so
can be unsound; and 3) FINE uses field, method, and class-level rea-
soning to ignore a manually identified set of semantics-modifying
changes that do not affect RV of specs in this paper, e.g., only chang-
ing a method’s access modifier. These three analyses still project
their results to the class level: all specs with events in the class con-
taining an impacted field or method are re-monitored. But, these
three analyses can still re-monitor fewer unaffected specs than pure
class-level analysis: they do not re-monitor specs that only have
events in classes that do not transitively use any changed method.

FineMOP also embodies three variants of two of these analyses:
(@ MTHDNOP (a variant of MTHD) does not project method-level
analysis results to the class level. Rather, it only re-monitors specs
with events in methods impacted by changes. 5 HyBRIDNOP (vari-
ant of HYBRID) also does not project the results of its analysis to
the class level when that analysis itself does not fall back to the
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class level. (®) Unlike the other five variants mentioned so far, which
re-monitor entire classes with affected specs, MTHDFM (variant of
MTHDNOP) only re-monitors affected specs in impacted methods.

MrtHD, HYBRID, and FINE are inspired by RTS algorithms, and
we are the first to adapt them for RV. MTHDNOP, HYBRIDNOP, and
MTHDFM are new in this paper. (§3 illustrates all six analyses.)
More specifically, this paper goes beyond prior RTS work on us-
ing fine-grained analyses and semantics of changes in four ways:
(i) FineMOP additionally computes and applies finer-grained map-
pings from programs to specs, while trying to satisfy design goals
and constraints that RTS does not have (as discussed in §3.1); (ii) we
design and apply a finer-grained monitoring algorithm in MTHDFM
that is not applicable to RTS; (iii) FineMOP combines (i) and (ii)
with reasoning about changes at different granularities; and (iv) we
evaluate different analysis granularities for RV, not testing.

We compare all six analyses in FineMOP with ps{ and psgf,
two class-level evolution-aware RV techniques proposed in prior
work [73, 112]. Similar to FineMOP, ps{ and psgf aim to speed up RV
by re-monitoring only a subset of specs affected by code changes,
but they use class-level analysis. ps{ is designed to be safe, so it uses
an often slow conservative static analysis to find affected specs. On
the other hand, psgf is designed to trade safety for speed, so it uses
a faster but less conservative analysis. §2 explains ps{ and psgf.

On 1,104 revisions of 68 GitHub projects, FineMOP is up to 4.86x
or 45.02 minutes (avg: 1.7x or 5.68 minutes) faster, re-monitors up
to 81.04% (avg: 33%) fewer specs than ps{ and finds 99.68% of new
violations found by ps{. Compared with psgf, which is quite fast,
FineMOP is up to 4.47x or 41.85 minutes (avg: 1.18x or 1.14 minutes)
faster, re-monitors up to 80.3% (avg: 29.91%) fewer specs, and finds
99.89% of new violations found by psgf. The few safety losses are
due to unsoundness of method-level analysis. Summed across all
projects, FineMOP is 6.44 hours faster than ps{ and 1.29 hours faster
than psgf. So, fine-grained analysis is promising for speeding up
evolution-aware RV. Future work must tackle the small safety loss.

We compare FineMOP, which re-runs all tests when re-monitoring
a subset of specs, with combining RTS with RV to re-run a sub-
set of tests while re-monitoring all specs. To do so, we compare
all six FineMOP analyses against combining four RTS techniques
with evolution-unaware RV, psf, and psgfz Ekstazi [33, 34] and
STARTS [69, 72], which use class-level dynamic and static change-
impact analyses respectively, and FineEkstazi and FineSTARTS [78],
which are like Ekstazi and STARTS, but skip tests that only depend
on classes where semantics-modifying changes cannot alter test
outcome. FineMOP alone is 12.3x faster than RTS alone. Lastly, we
combine all six FineMOP analyses with all four RTS techniques,
to re-run subsets of tests while re-monitoring subsets of specs.
FineMOP and RTS are complementary: combining them is 2.0 hours
faster than FineMOP alone and 2.9 hours faster than RTS plus RV.

This paper makes the following contributions:

* Analyses. FineMOP embodies the first six fine-grained analyses
and their algorithms to further speed up evolution-aware RV.

* Comparison. We compare FineMOP with four RTS techniques.

* Combination. We combine all of FineMOP’s analyses with RTS.

* Tool. We implement all six FineMOP analyses and their integra-
tion with four RTS techniques in a Maven Plugin.

FineMOP’s artifacts are at https://github.com/SoftEngResearch/FineMOP.
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1StringTokenizer_HasMoreElements(StringTokenizer i) {

2 event hasnexttrue after(StringTokenizer st) returning (boolean b):

3 (call(boolean StringTokenizer.hasMoreTokens()) || call(boolean
StringTokenizer.hasMoreElements())) && target(st) && condition(b){}

4 event next before(StringTokenizer st):

5 (call(* StringTokenizer.nextToken()) || call(* StringTokenizer.nextElement())
) && target(st){}

6 1tl: [J(next => (*) hasnexttrue)

7 @violation {/#print violationx/} }

Figure 1: The STHM MOP spec [94].

1class E {

2 public static int m1(String s) {

3 StringTokenizer st = new StringTokenizer(s);

4 int 1 = st.nextToken().length(); /*INSTR: STHM.nextx/

5 while (st.hasMoreTokens()) /#INSTR: STHM.hasnexttruex/
6 1 += st.nextToken().length(); /*INSTR: STHM.next*/
7 return 1; }}

spublic class ETest {

9@Test public void testM1(){assertEquals(3, E.m1("ab c"));}}

Figure 2: Example code and test.

2 Background and Running Example

We illustrate specs of correct JDK API usage, the RV style we use in
this paper (i.e., Monitoring-Oriented Programming, or MOP [16, 17,
19, 20]), and how state-of-the-art (SoTA) class-level evolution-aware
RV works. §3 uses this running example to illustrate FineMOP.
A spec, and how MOP works. Figure 1 shows the MOP spec
StringTokenizer_HasMoreElements (STHM); it has three parts.
(i) Lines 2-5 define events next and hasnexttrue, which RV in-
struments in monitored programs (e.g., after hasMoreTokens()
calls on StringTokenizer st and before calls to st.nextToken()).
(ii) Line 6 is a linear temporal logic (LTL) safety property: O(next =
Ohasnexttrue)—“always ([]), a next event on st implies (=>) that
the immediately preceding ((*)) event on st was hasnexttrue”.
MOP allows mixing past-time and future-time LTL operators,
and using other formalisms, e.g., finite state machines (FSM) [46],
extended regular expressions (ERE) [96], context free gram-
mars (CFG) [83], string rewrite systems (SRS) [82], etc. (iii) Line 7
is a handler that is triggered if LTL property is violated. Handlers
can be any user-defined code, but for testing we print a message.
The toy example in Figure 2 shows how RV amplifies the bug-
finding ability of unit tests. Method m1 (lines 2-7) takes a string and
returns its length after removing delimiters. Test testM1 always
passes, missing a subtle bug: m1 crashes on empty strings because
line 4 calls st.nextToken() without first checking if the tokenizer
has more tokens. RV of testM1 detects this bug. At line 4, when
nextToken is called on st, RV signals a next event that triggers the
violation handler: the next event is not immediately preceded by
hasnexttrue on st. STHM helped find several confirmed bugs [68].
SoTA class-level evolution-aware RV. Techniques in this pa-
per aim to speed up RV during CI by only re-monitoring specs
affected by code changes. SOTA evolution-aware RV techniques
first use class-level analysis to find classes impacted by changes.
Then, these techniques find affected specs as those with events
in impacted classes. To see how SoTA techniques work, consider
the old and new revisions of hypothetical code in Figure 3. There,
squares A, B, C, D, E, and F are classes, rectangles m1 and m2 are meth-
ods, and rhombi S1 to S6 are specs. Solid arrows show inheritance
or use relationships, and dashed arrows show where events for
each spec come from. These inter-class and class-to-spec relation-
ships are found via static analysis. Colors show changes: (i) Green:
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semantics-modifying changes that cannot lead to new violations of
our specs, e.g., making a private method public. (We use 13 such
changes from [78].) (ii) Red: new
code. (iii) Blue: changes that can
lead to new violations. §3.2 dis-
cusses deletions.

Given the changes in Figure 3,
SoTA ps{ and psgf in eMOP [73,
112] re-monitor specs S1-S5 in
the new revision: S1-S4 have
events in changed classes and
S5 has events in D, which de-
pends on changed class B. Spec
S6 is not re-monitored: F, the
only class with S6 events, is not
impacted by changes. If finding
affected specs is faster than re-monitoring S6, RV will be faster
in the new revision. ps{ is slow but safe (within static analysis
limitations), and uses a more conservative analysis that aims to
find all affected specs. But, psgf is unsafe by design; it uses a less
conservative analysis that may miss affected specs.

Finer-grained analyses can provide more speedup by re-
monitoring fewer unaffected specs. In Figure 3, our fine-grained
analyses re-monitor only specs S1-S3; S4 and S5 cannot signal new
events after the changes.

Figure 3: Example.

3 FineMOP
3.1 Design Considerations

Design goals. Evolution-aware RV has three conflicting goals.
(i) Efficiency: analysis time plus time to re-monitor affected specs
should be faster than re-monitoring all specs. (ii) Safety: finding
all new violations after a change; and (iii) Precision: re-monitoring
only affected specs. One conflict is that safe and precise analyses
are slow. SOTA evolution-aware RV techniques address this conflict
by using fast class-level static analyses to over-approximate the
impact of changes, but they imprecisely find more unaffected specs.
Note that dynamic analyses would require running tests twice—
once to find inter-class and class-to-spec relationships and once to
re-monitor affected specs—and incur an overhead of at least 2x.
Other trade-offs induced by finer-grained analyses.

1. Cost and safety of finer granularity levels. In Java, there are only
three finer analysis granularity levels than classes: methods, state-
ments, and fields. Analyses at these finer levels can be more precise,
helping goal (iii). But, finer-grained analyses also tend to be more
costly [34, 69], hurting goal (i), because dependency graphs can be
substantially larger at finer granularity levels. For example, projects
often have many more methods than classes. Also, finer-grained
analyses can be more unsafe [34, 69], hurting goal (ii).

2. Reasoning about semantics of changes. Not all changes require
re-monitoring specs that would otherwise be affected, e.g., only
changing a method’s visibility or variable name does not require
re-monitoring a JDK API spec. Ignoring such changes can be more
precise, helping goal (iii), but incurs a cost, hurting goal (i).

3. Number of class-level analyses. There are 12 class-level analyses
for evolution-aware RV [73] combining the following three fac-
tors: (i) the degree of conservativeness of change-impact analysis—1
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Figure 4: Workflow of evolution-aware RV in this paper.

SPECSFINDER

(most conservative), 2, and 3 (least conservative); (ii) whether to
instrument affected specs in 3rd-party libraries; and (iii) whether
to instrument affected specs in classes not impacted by changes. So,
the “1” subscript in ps{ means it uses the most conservative analysis
and the “c” superscript means it does not instrument affected specs
in non-impacted classes. Also, the “3” subscript in ps§[ means it
uses the least conservative analysis and the “¢” superscript means
it does not instrument affected specs in libraries. The challenge is
to speed up all class-level analyses without making them less safe.

Design justification. FineMOP’s six analyses—FINE, HYBRID, Hy-
BRIDNOP, MTHD, MTHDNOP, and MTHDFM—reason about methods
or fields. We do not yet explore statement-level reasoning because
all statements are in methods or field declarations. To compen-
sate for potential safety loss due to finer-grained analyses, three
of FineMOP’s six analyses “project” reasoning results onto classes.
FineMOP integrates all 12 class-level analyses from prior work [73].
But, 72 combinations (six FineMOP analyses times twelve class-
level analyses) are hard to evaluate at scale and present. So, we
only evaluate FineMOP’s analyses with ps{—the fastest safe-by-
design class-level analysis—and psgf—the fastest unsafe-by-design
one. The rationale is that if FineMOP’s analyses can safely speed
up ps{ and psgf, our results are likely to generalize to the other
slower safe- or unsafe-by-design class-level analyses. §4.2 makes
recommendations on how to choose among FineMOP’s analyses.

3.2 Overview

Figure 4 shows the high-level workflow of evolution-aware RV.
1. Compute changes. DIFFFINDER finds program elements that
changed. It computes checksums of elements in the new revi-
sion, compares them with those in the old revision, and returns
new, changed, deleted, or unchanged elements. DIFFFINDER cleans
debug-related information in bytecode before computing check-
sums, so elements where, e.g., only line numbers or white space
were modified are ignored. Deleted elements have no checksums
in the new revision, but do not require special handling: only el-
ements present in the new revision are used in subsequent steps.
Rationale: if events for spec s were signaled from element e in the
old revision, deleting e means that there can be no new s events (or
violations) from e in the new revision. If deleting e required modi-
fying another non-deleted element e’, that modification is handled
like any other change. Moved elements are treated as deleted from
the old location and added to the new. DiFFFINDER-used in HYBRID,
HyBripbNoP, MTuD, MTHDNOP, and MTHDFM-does not handle
refactoring, which is not precise. But, FINE performs additional
reasoning over program changes, and handles some refactoring.
Future work can use the checksum algorithm in refactoring-aware
REKs [109] to handle more refactorings.

In SoTA ps{ and psgf (§2, §3.1), DIFFFINDER compares check-
sums for classes, and outputs classes. In FINE, DIFFFINDER com-
pares checksums for fields, methods, and classes, but returns classes
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Algorithm 1 Generic evolution-aware RV algorithm for Figure 4

Algorithm 2 Procedure getDiff

Inputs: S: set of specs, &: program elements in new revision,
M: metadata, a (elemToChecksum, dg, elemToSpecs) triple where
elemToChecksum = {e — checksum(e) | e € &}, dg = dependency
graph, and elemToSpecs = {e > S|ee€ EAS C S},
v: a triple of binary values (opt, excludelLib, excludeNonImpacted)
Output: a set of violations
1: procedure remonitor(S, & M, v):
2 Enews EchangedsEall «— getDiff (8, M) > Algo 2
3:  M.dg « buildDependencyGraph (&)
4 Eimpacted < findImpacted(Enew U Echanged> M.dg, v.opt) > Algo 3
5: Saffected < computeAffectedSpecs(Eimpacted> M) > Algo 4
6:  Einstr < Eimpacted
7: if v.excludeLib then Ejnsty « Einstr U getLibElements()
8

if Iv.excludeNonAffected then Einstr < Einstr U (Eail \ Eimpacted)

9: return monitor(Saffecteds Einstr)

after reasoning about the semantics of the change. In HyBRrID and
HyBRIDNOP, DIFFFINDER compares checksums for classes and meth-
ods; HYBRID returns classes, HYBRIDNOP returns methods. Finally,
in MTHD, MTHDNOP, and MTHDFM, DIFFFINDER compares check-
sums for methods and returns methods.

2. Build dependency graphs. GRAPHBUILDER creates dependency
graphs with edge from node X to Y if X depends on Y. In ps¢ and psS’,
GRAPHBUILDER creates class-level graphs. In MTaD, MTHDNOP, and
MtHaDFM, GRAPHBUILDER creates method-level graphs with edges
from callers to callees. In HyBriD and HYBRIDNOP, GRAPHBUILDER
creates method- and class-level graphs. In FINE, GRAPHBUILDER
creates a class-level dependency graph. Class-level graphs have an
edge from class X to class Y if X uses or inherits from Y.

3. Find impacted program elements. IMPACTFINDER returns a
change impact set consisting of program elements whose nodes
reach nodes for changed or new elements in the reflexive and
transitive closure of the dependency graph. In HYBRID, the impacted
elements are computed using the method- and class-level graphs.
Other analyses use the graph from GRAPHBUILDER.

4.Find affected specs. SPECSFINDER returns, as affected, the subset
of specs whose events are generated in impacted elements. To do
so, SPECSFINDER maps each element e to specs instrumented into e
in the new revision. SoTA psf and psgf, and MTHD, HYBRID, FINE,
map classes to specs. Other analyses map methods to specs.

5. Configure and run RV. Based on ConFi1G, FineMOP configures
RV and monitors affected specs in the new revision. All options
instrument affected specs in impacted elements. Some options cause
X € {Mtup, HyBRrID, FINE, MTHDNOP, HYBRIDNOP, MTHDFM }
to not instrument (i) non-impacted elements in the code under
test (CUT), denoted X€; (ii) all elements in libraries, denoted X*;
or (iii) non-impacted CUT elements and all elements in libraries,
denoted X Lastly, FineMOP re-monitors only affected specs.

3.3 A generic evolution-aware RV algorithm

Algorithm 1 shows the entry point for analyses that implement the
workflow in Figure 4; it is generic in terms of program elements
and §3.4 describes how FineMOP’s analyses instantiate it. Line 2
calls getDiff (explained shortly) to return, as changed, elements
whose checksums differ in the old and new revisions. Procedure

Inputs: prgmElmts: a set of program elements, e.g., classes or methods,
M: (elemToChecksum, dg, elemToSpecs) triple
Output: E,j: all elements, Ej,,,: added elements, Es: changed elements
Initialization: newCksums < 0; Egjj < 0; Epeyy <— 0, Es < 0
1: procedure getDiff(prgmElmts, M):

2: forall e € prgmElmts do

3. Eg < EqqU{e}

4:  if e € M.elemToChecksumkeys() then > is e in old revision?
5 if checksum (e) is M.elemToChecksum [e] then> true if no change
6: newCksums « newCksums U {e — M.elemToChecksum[e]}

7 else

8 Es « Es U {e}

9 newCksums < newCksums U{e — checksum(e)}

10:  else > e was not in old revision
11: Enew < Epew U {e}

12: newCksums « newCksums U{e — checksum(e)}

13:  M.elemToChecksum < newCksums
14: return Ey,.,, Es, Eyj

getDiff returns Epe, (newly-added elements), E5 (modified ele-
ments), and Ej; (all elements). It is trivial to make getDiff return
E geleted (deleted elements). But, we elide E jgjoreq because it has no
impact on evolution-aware RV speed, safety, or precision: only
elements in the new revision (&) have nodes in the dependency
graph built on line 3. Next, line 4 computes as impacted Ejppacreds
the union of nodes that (i) are new, i.e., Epew; (ii) changed, i.e., Eg;
(ii) transitively or reflexively depend on Eg; and (iv) to which Eg
can transitively pass data. Lines 5 and 6 compute affected specs
(Saffected) and an initial set of elements to instrument with those
specs (Einstr), respectively. Based on CONFIG, elements in libraries
or non-impacted elements (the complement of E;p4c1e4) are added
to Ejnstr on lines 7 and 8. Lastly, line 9 re-monitors Saffected I Einstr-

In Algorithm 2, getDiff partitions prgmElmts into three sets,
based on how their checksums (in M) changed since the old revi-
sion. The loop on lines 2-12 classifies each element in prgmElmts.
Line 3 adds each element e in the new revision to Ej;. If the check-
sum of e’s cleaned bytecode is unchanged since the old revision
(line 5), that checksum is copied into newCksums on line 6. If e is in
both revisions, but its checksums differ, e is added to Es and its new
checksum is added to newCksums on line 9. If e is new, it is added to
E e and its checksum is added to newCksums on line 12. After the
loop terminates, line 13 sets M.elemToChecksum to newCksums for
use in the next revision and line 14 returns getDiff’s outputs.

In Algorithm 3, findImpacted takes Ejy (changed or newly-
added elements) and a dependency graph, and outputs Ejmpacted:
elements whose behavior can differ after changes. There, elements
that transitively or reflexively depend on Ey;y are always included
in Eimpacted (line 3). But, when applied to ps{, line 5 also computes
dependees—elements that E iy transitively depends on—for safety:
even if they are not changed, elements in Eg;y or their dependents
may pass data to dependees and alter RV outcomes.

Algorithm 4 shows how computeAffectedSpecs finds affected
SPecs, Saffected- First, it instruments all classes containing elements
in Ejmpacted With all specs (line 2) to obtain instrinfo—triples of
(i) spec name; (ii) instrumented source file; and (iii) line number—per
instrumentation site. Lines 3-7 update M.elemToSpec and return
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Algorithm 3 findImpacted subprocedure

Algorithm 5 getDiff subprocedure for FINE

Inputs: Egy: set of changed or new elements,
dg: dependency graph and opt: closure option
Output: Ejppgcreq: elements impacted by changes to Egyy
Initialization: E;ppacred < 0
1: procedure findImpacted(Egy, dg, opt):
2 dg~! < invert(dg) »dg~!isdg with all edge directions reversed.
3. Eimpacted < transitiveClosureOf(dg™!, Egifr)> dependents of E iy
4 if opt = ps{ then > dependees of dependents of E 7
5. Eimpactea < transitiveClosureOf (dg, Eimpacted)

6: return Ejppocted

Algorithm 4 computeAffectedSpecs subprocedure

Inputs: Ejpnpacreq: impacted elements, S: all specs,
M: (elemToChecksum, dg, elemToSpecs) triple

Output: Sypceq: affected specs
Initialization: S,gcreq < 0

1: procedure computeAffectedSpecs(Eimpacteds M):

2 instrinfo « instrument (Eimpacted> S)

3: for (srcFile, lineNumber, spec) € instrinfo do

4: e « elementAt(srcFile, lineNumber)

5:  M.elemToSpecs[e] « M.elemToSpecs[e] U {spec}
6

for all e € Ejppacred 40 Saffected < SaffecteaV M.elemToSpecs|e]

7: return Syfecred

Saffected s specs instrumented in any e € Ejppacreq- €1ementAt (not
shown) returns the class or method containing its arguments.

SoTA ps{ and psSC.[ instantiate these generic algorithms straight-
forwardly, using only classes as program elements, and setting
o = (ps{,0,1) and v = (psgf, 1,1), respectively in Algorithm 1.
We discussed ps{ and psgl in §2 and §3.1. Next, we discuss how
FineMOP’s analyses instantiate Algorithms 2-4.

3.4 Instantiating the generic algo in FineMOP

§3.4.1, §3.4.2, and §3.4.3 respectively discuss how MTHD (and its
two variants), HYBRID (and its one variant), and FINE instantiate
the generic algorithms, using Figure 3 as a running example.

3.4.1 MrtHD and its two variants. Challenges of method-level spec
selection include: (i) constructing and reasoning about method-
level dependency graphs that are often much larger than class-level
graphs for the same project; (ii) mapping specs to methods is costlier
than mapping them to classes; and (iii) for some changes, analysis
time is high enough to make method-level analysis slower than
class-level analyses. We address these challenges using three anal-
yses with different trade-offs: MTHD, MTHDNOP, and MTHDFM.
For all three, & (Algorithm 1) and prgmElmts (other algorithms)
contain only methods. Also, elemToChecksum in Algorithm 2 maps
methods to their checksums, and getDiff and findImpacted out-
put sets of methods. The main differences among MTHD, MTHDNOP,
and MTHDFM are in computeAffectedSpecs (Algorithm 4):

1. MTHD: elemToSpecs maps each class that contains method
m € Ejmpacted to specs that are instrumented into m’s enclosing
class. That is, elementAt on line 4 in Algorithm 4 returns the class
of each instrumentation site like INSTR : STHM.next on line 4 in
Figure 2. The benefit of MTHD over ps{ and psgf (§2, §3.1, [73, 112])
is that specs that only have events in classes that do not transitively

Inputs: &: classes, M: (classToChecksum, dg, classToSpecs) triple
Output: C: all classes, Cpey,: added classes, Cs: changed classes
Initialization: newM « 0; Cyjj < 0; Cpeyy «— 0,Cs5 «— 0

1: procedure getDiff(E, M):

2: forallc e &do

3: Cqy < Cap U {c}

4:  newM « newMU {c¢ — newMetadataForClass(c)}

5: if c € M.keys then > ¢ is in the old revision
6: if newM [c] = M[c] then > true if no change
7: else if isModified(M, newM, ¢) then Cs « Cs U {c}

8:  else Cyeyy < Cpew U {c} > Class did not exist in the old revision
9: M « newM

10:  return Cpey, Cs, Cyyp

Inputs: M: same as M in getDiff, Cpe,,: same as M, c: class
Output: frue if change can alter functionality, else false

11: procedure isModified(M, newM, c):

12:  //Determine whether the change alters behavior.

13: for all f € getFields(c) do

14:  if fldChanged(M{[c][f], newM [c][f]) then return true
15: for all n € getConstructorsAndInits(c) do

16:  if conChanged(M[c][n], newM [c][n]) then return true
17:  for all m € getMethods(c) do

18:  if mtdChanged(M{[c][m], newM [c][m]) then return true

19: return false

depend on impacted methods are not re-monitored. In Figure 3,
MTHD re-monitors only S1-54, saving the cost to monitor S5 that
ps{ and psgf incur. MTHD re-monitors S4 because it projects method-
level reasoning to classes to be safer, so it returns B as affected.

2. MTHDNOP: elemToSpecs maps from each method m € Ejppacreq
to specs that are instrumented into m, i.e., elementAt returns
the enclosing method of each instrumentation site. The benefit
of MTHDNOP over MTHD is that specs that only have events in
methods that are not in Ejppacreq are not re-monitored. In Figure 3,
by avoiding such projection, MTHDNOP re-monitors only S1-S3;
B.m1 that has S4 events is not affected by the change.

3. MTHDFM: elemToSpecs is same as MTHDNOP’s, but MTHDFM
applies an optimization to MTHDNOP: by default, monitor instru-
ments all classes containing an e € Ejppgcreq- But MTHDFM resets
CoNFIG on the fly (not shown) to only signal events from Ejppacred
at runtime. The benefit of MTHDFM over MTHDNOP is that events
in methods that are not in Ejppacreq are not signaled at runtime,
saving the time to monitor them. In Figure 3, MTHDFM also re-
monitors S2, but it re-monitors S1 only in method C.m1 and S3 only
in method B.m2, because the other two methods, A.m1 and B.m1, that
may generate events for S1 and S3 are not in Ejppacted-

3.4.2 HysriD and its one variant. The main difference between
HyBrID and MTHD is in remonitor (Algorithm 1). There, HyBRID
invokes getDiff twice, once with & as the set of classes, and once
again with & as the set of methods. HYBRID mixes analysis granu-
larities based on the change, for efficiency, e.g., if classes are added
or deleted, class-level reasoning is likely faster. But, if only methods
are modified, method-level may be more precise and faster than
the purely class-level analyses that ps{ and psgf use.
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Both calls from HYBRID to getDiff return six sets: C,y (all
classes), Cpew (newly-added classes), Cs (changed classes), My (all
methods), Mpew (newly-added methods), and Mcpangeq (changed
methods). These are used in findImpacted to find Ejppacreq- HY-
BRID projects analysis results to the class level, but HYBRID’s
variant—HYBRIDNOP—does not. Also, HYBRID’s elemToSpecs
maps classes to specs, but HYBRIDNoOP’s elemToSpecs maps meth-
ods to specs. HYBRIDNOP does not project method-level reasoning
to classes, so it can be faster than HYBRID by not re-monitoring af-
fected specs in unaffected methods. In Figure 3, HYBRID re-monitors
S1-S4, but HYBRIDNOP only re-monitors S1-S3: B.m1 is unchanged.

3.4.3 FiNE. Unlike all other FineMOP analyses, FINE uses getDiff
in Algorithm 5 because its metadata M is different and maps
each class C to a triple (F, N, M), that maps fields and callables—
constructors, initializers, and methods—in C to custom data struc-
tures [78]. FINE is the first to use these data structures to determine
if the semantics of bytecode-level changes can alter RV outcomes.

Algorithm 5 takes & as the set of classes. But, when checking if
C is modified (line 7), bytecode-modifying changes to each class
member are analyzed against 13 rules from [78] on lines 13-18
to see if those changes can alter RV outcomes. If all changes to
fields and callables in C cannot alter RV outcomes, C is treated as
not changed (line 19). Doing so can be more beneficial than other
algorithms if these are the only kind of changes in a revision. In
Figure 3, FINE re-monitors S1, S3, S4, and S5; unlike psf and psgf,
it does not re-monitor S2 because the change to A.m2 cannot lead to
new violations. FINE does not have variants. We hypothesize that
such FINE variants would be slower than FINE, as they must also
additionally collect method-level dependencies.

Some interdependencies make it hard to instantiate the generic
algorithm in other ways. For example, “NoP” requires a method-level
dependency graph, but FINE reasons about method-level changes
without using a graph. So, FINE cannot be combined with “NoP”.
Also, “FM” depends on “NoP”, so FINE plus “FM” is hard.

3.4.4  Summary: features of class-level and FineMOP analyses. Ta-
ble 1 summarizes features (header row) in all analyses (first column)
in this paper. Each FineMOP analysis is annotated with the same su-
perscripts and subscript as the class-level analyses (ps$ or ps§[) that
it is applied to. We will use this annotation for these FineMOP anal-
yses in the rest of this paper. §3.1 and §3.2 describe superscripts
c and /, and introduce subscripts 1 and 3 as the most and least
conservative change-impact analyses for evolution-aware RV [73],
respectively. The change-impact analysis marked as 1 leads to re-
monitoring specs with events in (i) changed program elements (Es),
(ii) dependents of Eg, (iii) dependees of Es, and (iv) dependees of
dependents of Es. In contrast, the change-impact analysis marked
as subscript 3 leads to re-monitoring only specs with events in (i) Egs
and (ii) dependents of Es.

3.5 Implementation

We implement FineMOP as a Maven plugin. We extend STARTS [72,
105] using JavaParser [52] and ASM [7] to reason about method-
level, field-and-method-level, and semantics-modifying changes.
FineMOP uses STARTS to find classes or methods impacted by
changes and uses Aspect] to find specs to re-monitor. Lastly,
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Table 1: Features of all analyses in this paper. ps{ and psgf
are SoTA class-level analyses we evaluate. Other rows mark
FineMOP’s six analyses with the same superscripts and sub-
script (explained in the text) as the class-level analyses that
we apply them to. /: feature is present. X: feature is absent.

Class level Method level Library Semantics Finer spec Finer
analysis analysis _instrumentation reasoning mapping  monitoring

sy v X 4 X X X
FINE] 4 X v 4 X

HYBR[DT v v 4 X X X
HYBMDNOPf v 4 4 X 4 X
MTHD? X 4 4 X X X
NITHDFM? X v v X v v
MTHDNOPT X v v X v X
psst v X X X X X
Fineg’ v X X v X X
HYBRIDgl v v X X X X
HYBRIDNOP;‘{ v v X X v X
Mrupg? X v X X X X
MrupFMS! X v X X v v
MTIIDNoPgl X v X X v/ X

Table 2: Statistics on 68 projects that we evaluate: no. of test
methods (#tests), test time w/o RV in seconds (t), test time
with RV in seconds (t""), lines of code (SLOC), % statement cov-
erage (cov®), % branch coverage (cov?), no. of commits (#SHAs),
years since first commit (age), and no. of stars (#*).

‘ #tests t t" SLOC coo® coo? #SHAs  age #k
Mean 223.9 7.1 77.7 11,672.8  64.4 56.0  476.2 10.1 475.3
Med 83.5 4.1 65.0 3,775.5  68.1 60.0 199.0  10.0 63.0
Min 2 2.2 7.7 312 0.4 0.3 10 2 6
Max 4,232 36.4 546.8  2.1x10° 99.2 99.3 4,890 27 12,292
Sum 15,222  481.7 5,280.4 7.9%10° n/a n/a n/a n/a 32,320

FineMOP updates Aspect]’s config file to avoid re-monitoring non-
affected specs. For MTHDFM, FineMOP uses Aspect] to dynamically
exclude un-impacted methods from monitoring.

4 Evaluation

We organize our evaluation around five research questions (RQs):
RQ1. What is FineMOP’s overhead vs. JavaMOP, ps{, and psgf?
RQ2. How precise is FineMOP compared with ps{, and psgf?
RQ3. How safe is FineMOP compared with ps{, and psgf?

RQ4. How does FineMOP compare with RTS?
RQ5. How beneficial is combining FineMOP with RTS?

RQ1 compares FineMOP’s overheads vs. those of SoTA evolution-

unaware JavaMOP and evolution-aware class-level analyses, ps]

and psge (82, §3.1, [73, 112]). RQ2 investigates the degree to which

FineMOP reduces ps{’s and psgf’s affected specs, impacted classes,

monitors, events, and instrumentation. RQ3 evaluates if FineMOP’s

speedups and precision are at the expense of missing violations
that are new after a change. RQ4 compares overheads of FineMOP
alone vs. those of combining four RTS techniques with ps{ and psgf.

Lastly, RQ5 evaluates the benefits of combining FineMOP with RTS.

4.1 Experimental Setup

Evaluation subjects and revisions. We use 1,104 revisions of 68
open-source projects; Table 2 summarizes these projects’ statistics
(“n/a” are meaningless sums). We start with all 80 projects in [38]
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Figure 7: Best-performing analysis applied to psgl vs. psgf (1.0 opinix;l-axis). Green: 10 projects exluded from orange bars in Figure 5.

where monitoring (not instrumentation) dominates RV overhead 4.2 RQ1: Overheads

and JavaMOP time is greater than 10 seconds. We use only 33 Figure 5 shows cumulative relative overheads of JavaMOP (left),

of these. Of those excluded, 28 have fewer than three historical psf and FineMOP applied to psi (middle), and psgf and FineMOP
revisions where JavaMOP works, three fail to compile, and tests fail

in 16. We also use 35 projects from [39] where RV overhead is most
dominated by instrumentation. For all 68 projects, we choose up to
20 historical revisions where Java file(s) changed, code compiles,
and tests pass with and without JavaMOP.

Specs. We use 160 specs of correct JDK API usage that were for-
malized by Lee et al. [67, 80] and used in all recent work on RV of
software tests [37-40, 53, 61, 62, 68, 70, 71, 73, 85, 112].

Baseline Tools. We use the modernized and refactored JavaMOP
in the TraceMOP repository [40, 106] which also merges Java-
MOP [49, 55] and RV-Monitor [50, 80] code, fixes a 13-year old

applied to psgf, respectively. Cumulative relative overhead is the
sum of time to run RV in all 1,104 revisions of 68 projects divided
by sum of time to run tests without RV in these versions.

FineMOP analyses vs. JavaMOP, ps{, and psgl. The teal bars
in the middle of Figure 5 show that, cumulatively, MTHDNon is
fastest when applied to ps{; it is ~2x faster than JavaMOP. Per
project, MTHDNOP] is up to 6.77x faster than JavaMOP (avg: 2.09x)
and up to 4.86x faster than ps{ (avg: 1.7x). Teal bars in the right
of Figure 5 show that MTHDNOng is also the fastest cumulatively
when applied to psgf, taking only 38.0% of JavaMOP time. Per
performance bug [51], and reduces duplication. We use ps{ and project, MTHDNOP? 1sup to 7'35} faster than JavaMOP (aYg: 2.87x)
psgl from eMOP [27, 112], but we extend them to add library classes and up to 4.47x faster than ps;® (avg: 1.18x). Overall, FineMOP

Y Sy . .
to dependency graphs. We use Ekstazi [33, 34], FineEkstazi [78], speeds up psy more than psg®, which is quite fast. MTHDFMY is

FineSTARTS [78], and STARTS [69, 72] for RTS experiments. the slowest cumulatively when applied to ps{; it is slower than
ps{ because for 10 projects where instrumentation dominates RV

overhead, the extra cost to disable monitoring in methods m ¢
Eimpacted 1s high. Orange bars in Figure 5 show results without these
10; the across-the-board speedup shows a need for future work to

Running Experiments. We write Maven extensions and scripts
to integrate FineMOP in evaluated projects. We run all experiments
in Docker containers; our repository has our Dockerfiles. We run
all experiments for each project on one of three machines: (i) Intel®

Xeon® w9-3475X CPU, 128 GB RAM:; (i) Intel® Xeon® Gold 6348 make FineMOP faster in instrumentation-dominated projects.
machine, 512 GB RAM; (iii) AMD EPYC™ 9654 machine, 1.5 T8~ DBest-performing FineMOP analysis per project. We run all
RAM, running Java 8 and Maven 3.9 on Ubuntu (20.04 or 24.04). FineMOP analyses in all revisions of each evaluated project, and

select the fastest and safe one as best-performing for that project.
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Figure 8: JavaMOP, eMOP, and FineMOP’s overhead during evolution. Red lines represent JavaMOP, ps{ and ps§[ (yellow and
green), and best performing FineMOP techniques BEsT{ and BESTgf (blue and cyan).

14 2(4) 0 (12) 10 (7) 48 (20)

41 (14) 14 (15)

10 (13) 25 (18) | 21 (2) m

FINE HyYBRID HYBRIDNOP  MTHD MTtupFM MTHDNOP

2,1 3(0) | a@s)
o

391 2(5)

Figure 9: How frequently each FineMOP analyis is one of
the three fastest. Numbers outside (inside) parentheses are

counts when FineMOP analyses are applied to ps{ (psgf).

When applied to ps{, Best{ in Figure 5 is the cumulative relative
overhead of FineMOP’s best-performing analysis per project; it is
9.56 hours faster than JavaMOP and 6.44 hours faster than psf. Also,
BESTgffanalogous to BEsTS —saves 12.3 and 1.29 hours, compared
to JavaMOP and psgf, respectively. Figure 6 shows the ratio of
BESTS to ps{ time per project; lower is better. The y = 1.0 line
represents ps{. The number at the bottom of each bar (and mapped
in the legend) shows the BesT{ analysis for each project. Also, green
bars show the 10 projects that we exclude from the orange bars in
Figure 5. In 50 of 68 projects, the best FineMOP algorithm takes
less than 80% of ps{ time, and for 14 out of 68 projects, FineMOP is
at least 2x faster than ps{. Figure 7 shows analogous results ratio
for BESTgf. There, only 13 of 68 projects take less than 80% ofpsgf
time, but two projects still see at least a 2x speedup.

Which FineMOP analysis should be the default? Figure 9 shows
how often each FineMOP analysis performs best (1), second (2), or
third (3) when applied to ps{ (psgf). MTHDNOP performs best most
often for ps$ and psS’. When FineMOP is applied to ps¢, FINES,
HYBRIDNOP?, MTHD?, MTHDFM? R MTHDNOP‘; are the fastest in 2,
10, 2, 6, 48 projects, respectively. ps] and HyBRID] are never the
fastest in our evaluation. When FineMOP is applied to psgf, FINEgl,
Hysring', HyBriDNOPS', Mapg’, MTHDFMS', and MTuDNOPS
are the fastest for 4, 12, 7, 14, 10, and 20 projects, respectively. psgf is
fastest for one project. FineMOP’s less conservative change-impact
analysis misses violations in only one project (P25). Each FineMOP
analysis is the best-performing at least twice when applied to ps{
or psgf, further justifying our design choice to implement multiple
analyses in FineMOP. Overall, based on these findings, we recom-
mend MTHDNOPY as the default FineMOP analysis: it optimizes
safe-by-design ps{ and it is most often the fastest without safety
issues in our experiments.

How to choose FineMOP analysis for a new project? We rec-
ommend to run all FineMOP analyses in the first revision, and
choose the best-performing analysis in that revision subsequently.
Our per-project analysis (our appendix has details) suggests two

reasons why this strategy might work well in practice. First, the
best-performing analysis in the first revision remains the best or
second best in all subsequent revisions in 48 of 68 evaluated projects.
Second, even when the best-performing analysis in the first revision
later becomes second best, the loss in speedup is only 9.3 percent-
age points on average per project, or 3.50 seconds per revision.
Users who prefer not to incur the one-time cost of finding the best-
performing analysis for their project can use our recommended
default: MTHDNOPY.
FineMOP’s runtime overhead as code evolves. Figure 8 shows
the overheads of JavaMOP, ps?, psgf, and FineMOP applied to ps{
and psgl for each evaluated revision in three projects (our appen-
dix has plots for all projects). The area under each curve is the
total time across all revisions per technique. Older revisions are to
the left of newer ones. In datasource — proxy (left), FineMOP’s
best-performing analysis is almost always faster than ps¢ and psgf.
For gelly — streaming (middle), FineMOP outperforms psf, but
is only slightly faster than psgf. In javadbf (right), FineMOP is
occasionally slower than ps{ and psgf, and FineMOP, ps{, and psg’?
are often slower than JavaMOP. But, FineMOP is faster than ps{
and psgf overall. Evolution-aware RV often performs poorly when
JavaMOP is fast, when a project makes frequent major changes, or
due to regular library updates. 25, 16, and 4 projects have similar
trends as those on the left, center, and right, respectively.
When does each FineMOP analysis perform best? We con-
duct a preliminary qualitative analysis by manually analyzing
146 revisions in 43 projects where a FineMOP analysis outper-
forms others. FINE tends to perform best when most or all of the
semantics-modifying changes in a revision cannot lead to new vio-
lations. When HyBRrID and HYBRIDNOP perform best, they do so
only marginally. But, if (i) method-level dependencies are complex
and (ii) the changes mix class-level changes (like class deletion or
addition) with finer-granularity changes, HyBrRID and HYBRIDNOP
tend to outperform other FineMOP analysis by avoiding unneces-
sary and costly traversal of the method-level graph, and outperform
ps{ and psgf by precisely re-monitoring fewer unaffected specs.
MTHDFM tends to perform best when (i) many events and moni-
tors are generated in methods that MTHDFM does not instrument
with affected specs or (ii) the project has few instrumentation lo-
cations, especially if frequent changes are made to methods with
events for many affected specs. In such cases, MTHDFM’s high pre-
cision pays off. But, MTHDFM performs poorly when the absolute
reduction in events and monitors is small or when a project has
many instrumentation points. In such cases, MTHDNOP tends to be
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Table 3: Average percentage of ps{ (left) and psgf (right) peak memory used (Mem.), affected specs (Specs), impacted classes
(Classes), monitors synthesized (Mon.), events signaled (Events), and lines instrumented (Instr.) by FineMOP’s analyses.

FiNg¢ | Hysrin¢ | HyBrIDNOPS | MruD$ | MTHDFMS | MTHDNOPS || FineS! | HyBring! | HysripNoPS! | Mrups? | MupFMS! | MTapNoPS!
Mem. 99.39 97.70 78.42 97.59 84.43 76.86 99.38 99.33 102.30 103.15 111.20 109.37
Specs 96.87 96.17 70.2 94.29 67.0 67.0 96.14 92.47 73.52 89.98 70.09 70.09
Classes | 93.59 86.97 86.97 72.21 72.21 72.21 88.84 69.44 69.44 57.8 57.8 57.8
Mon. 96.57 97.75 70.27 97.5 64.22 66.42 99.0 99.16 99.26 99.19 99.1 99.22
Events 96.51 97.93 70.02 97.78 63.79 66.47 98.97 99.19 99.22 99.18 99.11 99.24
Instr. 96.19 96.14 70.81 95.14 66.58 66.58 96.93 95.28 90.13 96.18 90.09 90.09

the better choice. MTHD is generally slower than MTHDNOP. In the
few cases where MTHD appears faster than MTHDNOP, the differ-
ence is only a few seconds and may be due to experimental noise.
In sum, MTHDFM tends to perform best for small projects where
developers make frequent and localized changes in methods con-
taining many events. Otherwise, MTHDNOP typically outperforms
MTHDFM. HYBRIDNOP generally performs better than HYBRID. Just
like with MTHD and MTHDNOP, the reason is that the “NoP” opti-
mization yields more precision that pays off in majority of projects.
Memory overheads. The first row in Table 3 shows average mem-
ory overhead of FineMOP’s analysis relative to ps{ and psgf. Apply-
ing FineMOP to ps{ saves more memory than applying FineMOP to
psg‘[. In fact, FineMOP uses more memory than ps§[ in most cases.
The most memory efficient FineMOP analysis reduces ps{’s peak
memory use by 2.05 GB. But, the analysis with the worst additional
memory use increases psgf’s peak memory by 532.48 MB.

4.3 RQ2: Precision

We measure the degree to which FineMOP reduces the number of
affected specs that class-level analyses (ps{ and psgf) re-monitor
after changes. We also measure the effect of that reduction on the
number of impacted classes, monitors created, events signaled, and
instrumented code locations in FineMOP vs. ps{ and psgf.

The second row in Table 3 shows the average percentage of af-
fected specs in ps{ (left) and psgf (right) that all six FineMOP anal-
yses find. (MTHDNOP and MTHDFM are equal). There, MTHDNOP
and MTHDNOP%Z re-monitor the lowest proportion of ps{ and psgf
affected specs—only 67.0% and 70.09%, respectively, on average.
MTHDNOP finds 28.1% fewer specs (17.8 per revision) than MTHD,
HyBRIDNOP finds 26.5% fewer specs (16.9 per revision) than HYBRID,
and HYBRID and MTHD select a similar number of specs.

The third row in Table 3 shows the average percentage of im-
pacted classes in ps{ (left) and psgf (right) that FineMOP finds.
Hysrip and HYBRIDNOP are equal, as are MTHD, MTHDNOP, and
MTHDFM: elements in these sets use the same change-impact anal-
yses. MTHD{ and MTHDNong find the fewest impacted classes on
average, only 72.21% (min: 32.02%) of ps{’s, and 57.8% (min: 16.76%)
of psgf’s. That is, reasoning about changes at the method-level is
more precise than reasoning with FINE and HYBRID.

The fourth and fifth rows in Table 3 show the average percentage
of monitors created and events signaled in ps{ (left) and psgf (right)
that FineMOP analyses find. MTHDFM creates the fewest monitors
and signals the fewest events, yet it is the slowest when FineMOP
is applied to ps{ because the extra cost to disable monitoring (see
§4.2) outweighs savings from signaling fewer events. MTHDNOPS
has the next fewest monitors created and events signaled, which
is notable because it achieves the greatest overall time savings

relative to ps7. We see also that FineMOP only marginally reduces
psgf’s monitors and events on average. This marginal reduction
likely contributes to the similarity in the greater distribution of best-
performing FineMOP analyses when applied to ps§[ in Figure 9.
Lastly, row six in Table 3 shows average percentages of locations
instrumented by ps{ (left) and ps§[ (right) that FineMOP instru-
ments. The differences among FineMOP analyses almost mirror
those for affected specs (second row). Since only affected specs are
used for instrumentation in a new program revision, the fewer the
affected specs, the fewer code locations are instrumented.

4.4 RQ3: Safety

Setup. An evolution-aware RV technique is safe if it finds all new
violations after changes [73]. The assumption is that users only
want to see new violations, and are aware of old ones. To compute
the ratio of new violations that FineMOP analyses find to those of
ps{ and psgf, we use Violation Message Suppression (VMS) [73] in
eMOP [112], as the ground truth. VMS aims to filter out old viola-
tions as those that are the same in the old and new revisions, after
syntactically mapping lines across versions. Since syntactic line
mapping [2, 86] is unsound in general, and semantic line mapping is
a hard problem [3, 104], VMS often reports old violations as new. So,
we report the number of new violations found by VMS but missed
by a FineMOP analysis before (pre) and after (post) manual inspec-
tion, during which we filter out seemingly missed new violations
that are due to (i) VMS limitations or bugs, (ii) non-deterministic
test executions, and (iii) a known bug in eMOP [36].
Results. Table 4 shows safety results for all six FineMOP analyses
when applied to ps{. The first, third, and fifth rows show numbers
of missed violations, numbers of revisions with a missed violation,
and numbers of projects with an unsafe revision before inspec-
tion, respectively. The second, fourth, and sixth rows show these
numbers after inspection. First column parentheses show totals.
Across 1,104 revisions of 68 projects, VMS finds 943 new vio-
lations. Before manual inspection, FINE‘I: seems to miss 70 viola-
tions that ps{ finds in 40 revisions of 15 projects. Our inspection
shows that FINE finds the same new violations as ps{. The least
safe, HYBRIDNOP?, MTHDFM?, and MTHDNOP‘I’ only miss two new
violations that ps{ finds. The percentages of missed new viola-
tions (<0.32%) and revisions where FineMOP’s analyses are un-
safe (<0.27%) are small. So, we have initial confidence that finer-
granularity analysis speeds up evolution-aware RV without impact-
ing safety much. §5 discusses future work on improving safety.
We find that all violations missed by some FineMOP analyses
are caused by missing edges in dependency graphs, which happen
because eMOP, which we extend, does not re-instrument libraries
when finding affected specs. So, FineMOP can miss violations if all
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Table 4: Safety of FineMOP relative to ps¢ (psS’).

FiNe  Hysrip HyBriDNoP MtTuD MTHDFM MtHDNOP
Missed violations pre (of 943) 70 (118) 76 (119) 93 (133)  75(118) 100 (136) 101 (134)
Missed violations post (of 943) 0 (0) 1(0) 2(1) 1(0) 2(1) 2(1)
Unsafe revisions pre (of 1,104) 40 (67) 45 (68) 61 (76) 45 (68) 62 (77) 63 (76)
Unsafe revisions post (of 1,104) 0 (0) 1(0) 2(1) 1(0) 2 (1) 2(1)
Unsafe projects pre (of 68) 15(19) 14 (18) 17 (21) 15(18) 18(21) 17 (21)
Unsafe projects post (of 68) 0(0) 1(0) 2(1) 1(0) 2(1) 2(1)
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Figoure 10: Relative overheads of four RTS tools plus JavaMOP
(orange bars), ps{ (green bars), and BEsT{ (pink bars).
events in a violating trace are in a library. Theoretically, graphs can
be incomplete if dynamic language features like reflection make
static analysis miss edges. But, we do not see missed violations due
to dynamic features, and prior work suggests such misses are rare
in practice (only 0.2% of 985 versions of 22 projects on average [69]).
Notably, for method-level dependency graphs, our early imple-
mentation included variants that use fields. We only present results
for variants that do not use fields because they are more efficient
and we do not observe missed violations due to field exclusion.
Numbers in parentheses in Table 4 show safety results for
FineMOP analyses when applied to psgf. Our inspection shows
that FiNeS!, Hysripg!, and Mrup§’ find all violations that ps’
finds. But, HYBRID§[, MTHDFMgf, and MTHDNOng each miss one
violation that psgf finds. FineMOP’s analyses miss <0.11% of new
violations that psgl finds in only <0.09% of revisions; our inspection
shows that these misses have the same causes as those in ps{.
Performance-safety trade off. Users who are only concerned
with speed, e.g., during pre-commit testing or debugging, can use
the fastest technique for their project, since safety issues are rare
in our experiments (at its worst, FineMOP only misses 0.32% of
violations). But, when safety and performance are both essential,
the fastest and safe technique for a project should be used.

4.5 RQ4: Comparing with RTS

We compare the overheads relative to running tests without RV
of the best-performing FineMOP analysis (BEST{) per project with
those of combining JavaMOP with four regression test selection
(RTS) tools: STARTS [69, 72], Ekstazi [33, 34], FineSTARTS, and
FineEkstazi [78]. RTS aims to speed up regression testing by re-
running only tests impacted by code changes. We evaluate 51 of
68 projects. We could not evaluate the rest due to a known bug in
Ekstazi or FineEkstazi [108]. The relative overheads of JavaMOP,
STARTS, FineSTARTS, Ekstazi, FineEkstazi, and BEST‘; are 12.4, 9.4,
8.8, 10.7, 9.3, and 5.8, respectively. Combining JavaMOP with all
four RTS tools is faster than running JavaMOP alone. But despite
running all tests in each revision, FineMOP still outperforms all
combinations of RTS with JavaMOP. BEst{ is up to 12.3x (avg: 1.4x)
faster than the most efficient RTS tool used. Across the 51 projects,
FineMOP is faster than all RTS tools in 34 projects, and faster than
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an RTS tool in 43 projects. We conclude that RTS alone does not
provide as much speedup as FineMOP alone. But, both approaches
could be complementary. So, we next evaluate their combination.

4.6 RQ5: Combining with RTS

We combine the four RTS tools in RQ4 with the best-performing
FineMOP analysis per project, as well as class-level ps{ and psgf.
Figure 10 shows the resulting relative overheads. There, the first bar
is JavaMOP alone. The orange bars show overheads of JavaMOP
plus each RTS tool. The green bars show overheads of ps{ plus
each RTS tool, and the red bars show overheads of BesT{ plus
RTS. Combining FineMOP with RTS yields even more speedups in
Figure 10. Combining BesT{ with FineSTARTS has the best speedup,
from 8.8x to 6.4x, and is the fastest on average for all combinations in
Figure 10. On average, BEsT{ plus RTS is 1.2x (max 3.5x) faster than
the fastest RTS tool alone. Across the 51 projects, FineMOP plus RTS
outperforms the RTS-only counterpart in 31 projects. Compared
with STARTS alone, combining BesTS with STARTS saves 2.5 hours
across all projects, BEsT{ plus FineSTARTS saves 2.5 hours, BEsT]
plus Ekstazi saves 2.9 hours, and Best{ plus FineEkstazi saves 1.5
hours. These speedups come at little additional cost due to RTS’
analysis, which account for 1.2% of the end-to-end time of BEST?
plus RTS runtime and 1.5% of BESTgf plus RTS end-to-end time.

Combining FineMOP with RTS yields, on average, 32.2% fewer
events, 32.7% fewer monitors, and 29.3% fewer instrumented loca-
tions, compared with RTS alone. Also, FineMOP plus RTS yields
22.6% fewer events, 26.0% fewer monitors, and 14.6% fewer in-
strumented locations compared with FineMOP alone. On average,
FineMOP alone yields 12.4%, 9.1%, and 17.2% fewer events, monitors,
and instrumented locations, respectively, than RTS alone. We find
that combining FineMOP with RTS benefits less from RTS selecting
fewer tests and more from FineMOP re-monitoring fewer specs.

One concern is that, by combining FineMOP and RTS, their
potential for unsafety might be compounded. We see no such
compounding in our experiments: the unsafe cases from FineMOP
plus RTS are the same as those in Table 4 after inspection.

5 Discussion

Why some projects see no speedups. The main reason is frequent
third-party library updates. By default, ps{ and psgf re-monitor all
specs in all classes when a library changes, because reasoning about
the impact of such changes is prohibitive [72, 112]. FineMOP inher-
its this limitation. In projects P10, P60, and P65, roughly 35%, 75%,
and 50% of revisions, respectively, update a library. So, FineMOP’s
best-performing analyses in these projects are slower than ps{ and
psgf. But, FineMOP’s speedups across many revisions in all but one
project outweigh costs of library changes in few revisions. Another
reason some projects see minimal speedup, especially when apply-
ing FineMOP to psgl, is that RV is already very fast for them. So,
FineMOP’s extra analysis costs do not pay off.

Limitations and future work. Some FineMOP variants use
method-level static analysis, which can be unsound if the depen-
dency graph is incomplete. But, we find that for 66 (of 68) projects
and 1,102 revisions, FineMOP’s method-level analyses find all new
violations found by class-level ps{ and psgf. FineMOP’s static anal-
ysis can be unsound in the presence of dynamic features like re-
flection [65]. Other static analyses (including eMOP [73, 112] and
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STARTS [69, 72]) have this limitation too, and future work can learn
from techniques for making them “soundier” [79] in the presence
of such dynamic features [10, 14, 74-77, 99, 102, 107].

We evaluate FineMOP on monitoring- and instrumentation-
dominated projects. But, for instrumentation-dominated projects,
FineMOP alone may not offer as much speedup as iMOP, the
SoTA instrumentation-driven evolution-aware RV technique [39].
More research and development is needed to combine iMOP and
FineMOP. To see why, consider a hypothetical example with two
specs: SpecA and SpecB. iMOP must instrument SpecA and SpecB
into the entire codebase in the first revision. If in a second revision
FineMOP finds only SpecA to be affected by changes, there is no
way to (safely) undo all the instrumentation of SpecB that iMOP
did in the first revision. So, if FineMOP is combined with iMOP
today, FineMOP will still re-monitor SpecA and SpecB.

FineMOP is designed to reduce RV overhead only during testing,
before deployment. FineMOP aims to find all new violations, not
all violations, so it is not suitable for use in deployment, where RV
aims to find all violations. Also, this paper is on overhead reduction
only; it is not concerned with other challenges of using RV, like
imprecise specs, debugging violations, or inferring specs.

Lastly, in our safety evaluation, we manually inspect hundreds of

new violations that were seemingly missed. But, outside research,
RV users will not need to do as much manual inspection since
they will likely not be comparing analyses as we do. Better tools
and techniques for reducing manual inspection are needed, but
this is research on its own [70], beyond our paper’s scope. We
perform manual inspection mainly due to (i) test nondeterminism
and (ii) bugs in eMOP’s VMS, which we use to evaluate safety. If
a violation occurs non-deterministically when running the same
technique on the same program and tests always pass, there is no
automated technique to find the root cause. So, we use manual
inspection. As eMOP improves, the need to manually inspect some
of its outputs will also naturally reduce.
Threats to validity. FineMOP’s results may not generalize beyond
the 68 projects and their 1,104 GitHub revisions that we evaluate.
To mitigate this threat, we use many projects and revisions from
prior evolution-aware RV work and a recent RV study. Due to bugs
and limitations in VMS, we manually inspect some violations. This
manual process may lead to misclassifications, a threat that we
mitigate by having a co-author review all inspection results. The
scripts and Maven plugin that we use may also contain bugs. To
reduce this threat, the scripts and plugin are reviewed by multiple
authors for validation. We also build experimental infrastructure
on top of more mature tools such as STARTS and eMOP, and our
artifact is publicly available on GitHub for external validation.

6 Related Work

RV during software testing. It is well-known in the RV com-
munity that RV can be used to find bugs during testing. For
example, in very early work, Artho et al. [5, 6] combined au-
tomated test generation with RV. But, with the emergence of
CI [26, 31, 47, 48, 84, 103, 113], and its rapid code-change cycles,
more recent work started to investigate how to make RV practical
for use during modern regression testing in CL. Such works include
those showing that RV’s runtime overhead during testing in CI
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is likely still too high [38, 53, 68, 70]. To speed up RV in CI set-
tings, Legunsen et al. [71, 73, 112] proposed evolution-aware RV,
and techniques that use coarse-grained class-level analysis to re-
monitor only specs related to code affected by changes. We discuss
and compare with class-level evolution-aware RV throughout this
paper. But, FineMOP is the first to leverage fine-grained reasoning,
including about the semantics of changes, to further reduce the
overhead of evolution-aware RV. Recent work took an orthogonal,
complementary approach to reduce instrumentation costs during
evolution [39]. FineMOP speeds up monitoring portions of RV over-
head, which are beyond the scope of an instrumentation-driven
approach. Beyond overhead reduction, some prior work explored
using machine learning to classify spec violations as true bugs or
false alarms (due to bugs in the specs or RV) [85]. Future work can
investigate if violations reported by FineMOP are true bugs.

RV research more broadly. Several surveys and tutorials out-
line the tremendous progress made in the RV community over
the last few decades [9, 11, 15, 29, 30]. But, leveraging software
evolution as FineMOP does is a recent research direction. Some
earlier directions include those that make monitoring algorithms
more efficient [18, 21, 23], improve performance of monitor garbage
collection [54, 56, 80], propose new data structures [22, 23, 80, 89],
infer specs manually or automatically [32, 66, 67, 88], and develop
new frameworks and tools [4, 13, 20, 44, 55, 58, 112].

Regression testing. RTS [28, 34, 35, 41, 43, 64, 69, 78, 87, 91,
92, 99, 101, 110, 115-117, 120] speeds up regression testing by re-
running only a subset of tests affected by code changes. RTS in-
spired evolution-aware RV [71]. Prior work [39, 73, 112] showed
that RTS can be used to reduce RV overhead, but RTS by itself does
not provide as much speedup as evolution-aware RV techniques.
Our results (RQ4 and RQ5) support these earlier findings about
RTS vs. evolution-aware RV and show that FineMOP and RTS are
complementary. FineMOP is inspired by recent RTS approaches
[78, 115, 117] that use finer-grained analyses to speed up RTS, but
those techniques are not concerned with RV. Future work can ex-
plore combining FineMOP with other regression testing techniques
such as test-suite reduction [1, 12, 42, 57, 63, 81, 90, 97, 98, 100, 111,
118, 119] and test-case prioritization [8, 24, 25, 59, 93, 114].

7 Conclusions

FineMOP speeds up RV by using fine-grained analyses to re-monitor
fewer unaffected specs as code evolves. Prior evolution-aware RV
techniques used coarse-grained, class-level analysis to find a sub-
set of affected specs to re-monitor after code changes. But, these
techniques are imprecise and often re-monitor unaffected specs for
which there can be no new violation after code changes. FineMOP’s
more precise analysis considers fewer classes as impacted and re-
monitors fewer specs compared to the SoTA. FineMOP outperforms
class-level evolution-aware RV (eMOP) and JavaMOP on 1,104 revi-
sions of 68 projects, and finds 99.68% of all new violations found by
eMOP. Future work is needed to address this small safety loss.
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