
Fine-Grained Analyses for Evolution-Aware Runtime Verification
Pengyue Jiang
pj257@cornell.edu
Cornell University

Ithaca, New York, USA

Kevin Guan
kzg5@cornell.edu
Cornell University

Ithaca, New York, USA

Mahdi Khosravi
mahdi.khosravi@metu.edu.tr

Middle East Technical University
Ankara, Turkey

Moustafa Ismail
moustafa.ismail@metu.edu.tr

Middle East Technical University
Ankara, Turkey

Marcelo d’Amorim
mdamori@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Owolabi Legunsen
legunsen@cornell.edu
Cornell University

Ithaca, New York, USA

Abstract

Runtime verification (RV) found many bugs by monitoring passing
tests in many open-source projects against formal specifications
(specs). But, RV is often too slow for use in continuous integration.
So, evolution-aware techniques were proposed to speed up RV
by re-monitoring only a subset of specs affected by code changes.
These techniques use coarse-grained class-level analyses, so they
can sub-optimally and imprecisely re-monitor unaffected specs.

We propose FineMOP to speed up evolution-aware RV by using
fine-grained analyses to re-monitor fewer unaffected specs. The key
idea is simple: changes often do not require re-monitoring specs
that are only related to unchanged parts of changed classes. We im-
plement six variants of three fine-grained analyses in FineMOP and
evaluate them on 1,104 revisions of 68 open-source Java projects.
Compared with two class-level techniques, FineMOP is up to 4.86x
faster, re-monitors up to 81.04% fewer specs per revision, and
finds 99.68% of all new violations that these techniques find. Also,
FineMOP and Regression Test Selection (RTS) are complementary:
combining FineMOP with RTS is faster than FineMOP or RTS alone.
ACM Reference Format:

Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo
d’Amorim, andOwolabi Legunsen. 2026. Fine-GrainedAnalyses for Evolution-
Aware Runtime Verification. In 2026 IEEE/ACM 48th International Conference
on Software Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3744916.3787833

1 Introduction

Runtime verification (RV) [45, 60, 95] checks running programs
against formal specifications (specs). RV first uses instrumentation
to re-write a program to signal spec-related events (e.g., method
calls) at runtime. Then, while running the instrumented program,
traces—i.e., sequences of events—are checked using monitors that
are dynamically synthesized from specs. If a trace violates a spec, a
monitor performs a user-specified action, e.g., raising a warning.

RV of passing unit tests against specs of correct JDK API usage
now scales to thousands of open-source projects [38, 53, 68, 70, 85]
and helped find hundreds of bugs that testing alone missed. But,

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/2026/04
https://doi.org/10.1145/3744916.3787833

RV is often too slow for use in continuous integration (CI) [38]. So,
evolution-aware RV techniques were proposed to speed up RV by
re-monitoring only a subset of affected specs for which events can
be signaled from code impacted by changes [71, 73, 112].

Evolution-aware RV addresses twomain challenges. First, time to
find and re-monitor affected specs must be less than time to simply
re-monitor all specs across many revisions. Occasional slowdown is
tolerable if most revisions see a speedup. Second, algorithms should
be safe—defined as finding all new violations after a change [73].

All prior evolution-aware RV techniques use coarse-grained
class-level analyses to find specs affected by changes [39, 73, 112].
So, these techniques can sub-optimally and imprecisely re-monitor
unaffected specs. Suppose class A has two independent methods m1
and m2, spec S1 has events only in m1 and spec S2 has events only
in m2. If only m1 changes, current evolution-aware RV techniques
correctly re-monitor S1, but they also imprecisely re-monitor S2.
Finer-grained method-level analysis of this change will re-monitor
only S1, thereby speeding up evolution-aware RV.

We propose FineMOP to speed up evolution-aware RV by us-
ing fine-grained analyses to re-monitor fewer unaffected specs.
Fine-grained analyses can be unsound or slower than class-level
ones [69]. But, two insights from recent fine-grained analyses for re-
gression test selection (RTS) [78, 115, 117] inspire FineMOP: (i) extra
time for fine-grained analysis is often offset by gains in lower end-
to-end time across revisions; and (ii) unsoundness of fine-grained
analysis is often mitigated by falling back to the class-level.

FineMOP embodies three fine-grained analyses: 1 Mthd rea-
sons about method-level changes; 2 Hybrid also reasons about
method-level changes, but falls back to the class level if doing so
can be unsound; and 3 Fine uses field, method, and class-level rea-
soning to ignore a manually identified set of semantics-modifying
changes that do not affect RV of specs in this paper, e.g., only chang-
ing a method’s access modifier. These three analyses still project
their results to the class level: all specs with events in the class con-
taining an impacted field or method are re-monitored. But, these
three analyses can still re-monitor fewer unaffected specs than pure
class-level analysis: they do not re-monitor specs that only have
events in classes that do not transitively use any changed method.

FineMOP also embodies three variants of two of these analyses:
4 MthdNoP (a variant of Mthd) does not project method-level
analysis results to the class level. Rather, it only re-monitors specs
with events in methods impacted by changes. 5 HybridNoP (vari-
ant of Hybrid) also does not project the results of its analysis to
the class level when that analysis itself does not fall back to the

1

https://orcid.org/0009-0002-9679-8936
https://orcid.org/0009-0002-9679-8936
https://orcid.org/0009-0009-5297-7845
https://orcid.org/0009-0007-9301-7352
https://orcid.org/0000-0002-1323-8769
https://orcid.org/0000-0001-5631-4816
https://doi.org/10.1145/3744916.3787833
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3744916.3787833

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

class level. 6 Unlike the other five variants mentioned so far, which
re-monitor entire classes with affected specs, MthdFM (variant of
MthdNoP) only re-monitors affected specs in impacted methods.

Mthd, Hybrid, and Fine are inspired by RTS algorithms, and
we are the first to adapt them for RV. MthdNoP, HybridNoP, and
MthdFM are new in this paper. (§3 illustrates all six analyses.)
More specifically, this paper goes beyond prior RTS work on us-
ing fine-grained analyses and semantics of changes in four ways:
(i) FineMOP additionally computes and applies finer-grained map-
pings from programs to specs, while trying to satisfy design goals
and constraints that RTS does not have (as discussed in §3.1); (ii) we
design and apply a finer-grained monitoring algorithm in MthdFM
that is not applicable to RTS; (iii) FineMOP combines (i) and (ii)
with reasoning about changes at different granularities; and (iv) we
evaluate different analysis granularities for RV, not testing.

We compare all six analyses in FineMOP with 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 ,
two class-level evolution-aware RV techniques proposed in prior
work [73, 112]. Similar to FineMOP, 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 aim to speed up RV

by re-monitoring only a subset of specs affected by code changes,
but they use class-level analysis. 𝑝𝑠𝑐1 is designed to be safe, so it uses
an often slow conservative static analysis to find affected specs. On
the other hand, 𝑝𝑠𝑐ℓ3 is designed to trade safety for speed, so it uses
a faster but less conservative analysis. §2 explains 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 .

On 1,104 revisions of 68 GitHub projects, FineMOP is up to 4.86x
or 45.02 minutes (avg: 1.7x or 5.68 minutes) faster, re-monitors up
to 81.04% (avg: 33%) fewer specs than 𝑝𝑠𝑐1 and finds 99.68% of new
violations found by 𝑝𝑠𝑐1 . Compared with 𝑝𝑠𝑐ℓ3 , which is quite fast,
FineMOP is up to 4.47x or 41.85 minutes (avg: 1.18x or 1.14 minutes)
faster, re-monitors up to 80.3% (avg: 29.91%) fewer specs, and finds
99.89% of new violations found by 𝑝𝑠𝑐ℓ3 . The few safety losses are
due to unsoundness of method-level analysis. Summed across all
projects, FineMOP is 6.44 hours faster than 𝑝𝑠𝑐1 and 1.29 hours faster
than 𝑝𝑠𝑐ℓ3 . So, fine-grained analysis is promising for speeding up
evolution-aware RV. Future work must tackle the small safety loss.

We compare FineMOP,which re-runs all tests when re-monitoring
a subset of specs, with combining RTS with RV to re-run a sub-
set of tests while re-monitoring all specs. To do so, we compare
all six FineMOP analyses against combining four RTS techniques
with evolution-unaware RV, 𝑝𝑠𝑐1 , and 𝑝𝑠𝑐ℓ3 : Ekstazi [33, 34] and
STARTS [69, 72], which use class-level dynamic and static change-
impact analyses respectively, and FineEkstazi and FineSTARTS [78],
which are like Ekstazi and STARTS, but skip tests that only depend
on classes where semantics-modifying changes cannot alter test
outcome. FineMOP alone is 12.3x faster than RTS alone. Lastly, we
combine all six FineMOP analyses with all four RTS techniques,
to re-run subsets of tests while re-monitoring subsets of specs.
FineMOP and RTS are complementary: combining them is 2.0 hours
faster than FineMOP alone and 2.9 hours faster than RTS plus RV.

This paper makes the following contributions:
★ Analyses. FineMOP embodies the first six fine-grained analyses

and their algorithms to further speed up evolution-aware RV.
★ Comparison. We compare FineMOP with four RTS techniques.
★ Combination.We combine all of FineMOP’s analyses with RTS.
★ Tool. We implement all six FineMOP analyses and their integra-

tion with four RTS techniques in a Maven Plugin.
FineMOP’s artifacts are at https://github.com/SoftEngResearch/FineMOP.

1 StringTokenizer_HasMoreElements(StringTokenizer i) {

2 event hasnexttrue after(StringTokenizer st) returning (boolean b):

3 (call(boolean StringTokenizer.hasMoreTokens()) || call(boolean

StringTokenizer.hasMoreElements())) && target(st) && condition(b){}

4 event next before(StringTokenizer st):

5 (call(* StringTokenizer.nextToken()) || call(* StringTokenizer.nextElement())

) && target(st){}

6 ltl: [](next => (*) hasnexttrue)

7 @violation {/*print violation*/} }

Figure 1: The STHMMOP spec [94].

1 class E {

2 public static int m1(String s) {

3 StringTokenizer st = new StringTokenizer(s);

4 int l = st.nextToken().length(); /*INSTR: STHM.next*/

5 while (st.hasMoreTokens()) /*INSTR: STHM.hasnexttrue*/

6 l += st.nextToken().length(); /*INSTR: STHM.next*/

7 return l; }}

8 public class ETest {

9 @Test public void testM1(){assertEquals(3, E.m1("ab c"));}}

Figure 2: Example code and test.

2 Background and Running Example

We illustrate specs of correct JDK API usage, the RV style we use in
this paper (i.e., Monitoring-Oriented Programming, or MOP [16, 17,
19, 20]), and how state-of-the-art (SoTA) class-level evolution-aware
RV works. §3 uses this running example to illustrate FineMOP.
A spec, and how MOP works. Figure 1 shows the MOP spec
StringTokenizer_HasMoreElements (STHM); it has three parts.
(i) Lines 2–5 define events next and hasnexttrue, which RV in-
struments in monitored programs (e.g., after hasMoreTokens()
calls on StringTokenizer st and before calls to st.nextToken()).
(ii) Line 6 is a linear temporal logic (LTL) safety property: □(next⇒
⊙hasnexttrue)—“always ([]), a next event on st implies (=>) that
the immediately preceding ((*)) event on st was hasnexttrue”.
MOP allows mixing past-time and future-time LTL operators,
and using other formalisms, e.g., finite state machines (FSM) [46],
extended regular expressions (ERE) [96], context free gram-
mars (CFG) [83], string rewrite systems (SRS) [82], etc. (iii) Line 7
is a handler that is triggered if LTL property is violated. Handlers
can be any user-defined code, but for testing we print a message.

The toy example in Figure 2 shows how RV amplifies the bug-
finding ability of unit tests. Method m1 (lines 2–7) takes a string and
returns its length after removing delimiters. Test testM1 always
passes, missing a subtle bug: m1 crashes on empty strings because
line 4 calls st.nextToken() without first checking if the tokenizer
has more tokens. RV of testM1 detects this bug. At line 4, when
nextToken is called on st, RV signals a next event that triggers the
violation handler: the next event is not immediately preceded by
hasnexttrue on st. STHM helped find several confirmed bugs [68].
SoTA class-level evolution-aware RV. Techniques in this pa-
per aim to speed up RV during CI by only re-monitoring specs
affected by code changes. SoTA evolution-aware RV techniques
first use class-level analysis to find classes impacted by changes.
Then, these techniques find affected specs as those with events
in impacted classes. To see how SoTA techniques work, consider
the old and new revisions of hypothetical code in Figure 3. There,
squares A, B, C, D, E, and F are classes, rectangles m1 and m2 are meth-
ods, and rhombi S1 to S6 are specs. Solid arrows show inheritance
or use relationships, and dashed arrows show where events for
each spec come from. These inter-class and class-to-spec relation-
ships are found via static analysis. Colors show changes: (i) Green:

2

https://github.com/SoftEngResearch/FineMOP

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

semantics-modifying changes that cannot lead to new violations of
our specs, e.g., making a private method public. (We use 13 such

A

m1

m2

B

m1

m2

C

m1

m2

D

m1

S1

S2

S3

S4

S5

S6

E

m1

F

m1

m2

Figure 3: Example.

changes from [78].) (ii) Red: new
code. (iii) Blue: changes that can
lead to new violations. §3.2 dis-
cusses deletions.

Given the changes in Figure 3,
SoTA 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 in eMOP [73,

112] re-monitor specs S1–S5 in
the new revision: S1–S4 have
events in changed classes and
S5 has events in D, which de-
pends on changed class B. Spec
S6 is not re-monitored: F, the
only class with S6 events, is not
impacted by changes. If finding

affected specs is faster than re-monitoring S6, RV will be faster
in the new revision. 𝑝𝑠𝑐1 is slow but safe (within static analysis
limitations), and uses a more conservative analysis that aims to
find all affected specs. But, 𝑝𝑠𝑐ℓ3 is unsafe by design; it uses a less
conservative analysis that may miss affected specs.

Finer-grained analyses can provide more speedup by re-
monitoring fewer unaffected specs. In Figure 3, our fine-grained
analyses re-monitor only specs S1–S3; S4 and S5 cannot signal new
events after the changes.

3 FineMOP

3.1 Design Considerations

Design goals. Evolution-aware RV has three conflicting goals.
(i) Efficiency: analysis time plus time to re-monitor affected specs
should be faster than re-monitoring all specs. (ii) Safety: finding
all new violations after a change; and (iii) Precision: re-monitoring
only affected specs. One conflict is that safe and precise analyses
are slow. SoTA evolution-aware RV techniques address this conflict
by using fast class-level static analyses to over-approximate the
impact of changes, but they imprecisely find more unaffected specs.
Note that dynamic analyses would require running tests twice—
once to find inter-class and class-to-spec relationships and once to
re-monitor affected specs—and incur an overhead of at least 2x.
Other trade-offs induced by finer-grained analyses.
1. Cost and safety of finer granularity levels. In Java, there are only
three finer analysis granularity levels than classes: methods, state-
ments, and fields. Analyses at these finer levels can be more precise,
helping goal (iii). But, finer-grained analyses also tend to be more
costly [34, 69], hurting goal (i), because dependency graphs can be
substantially larger at finer granularity levels. For example, projects
often have many more methods than classes. Also, finer-grained
analyses can be more unsafe [34, 69], hurting goal (ii).
2. Reasoning about semantics of changes. Not all changes require
re-monitoring specs that would otherwise be affected, e.g., only
changing a method’s visibility or variable name does not require
re-monitoring a JDK API spec. Ignoring such changes can be more
precise, helping goal (iii), but incurs a cost, hurting goal (i).
3. Number of class-level analyses. There are 12 class-level analyses
for evolution-aware RV [73] combining the following three fac-
tors: (i) the degree of conservativeness of change-impact analysis—1

Specs

Config

Prog. 𝑣1

Prog. 𝑣2

DiffFinder

1

GraphBuilder

2

SpecsFinder
4

ImpactFinder
3

RVRunner

5

Violations

Figure 4: Workflow of evolution-aware RV in this paper.

(most conservative), 2, and 3 (least conservative); (ii) whether to
instrument affected specs in 3rd-party libraries; and (iii) whether
to instrument affected specs in classes not impacted by changes. So,
the “1” subscript in 𝑝𝑠𝑐1 means it uses the most conservative analysis
and the “c” superscript means it does not instrument affected specs
in non-impacted classes. Also, the “3” subscript in 𝑝𝑠𝑐ℓ3 means it
uses the least conservative analysis and the “ℓ” superscript means
it does not instrument affected specs in libraries. The challenge is
to speed up all class-level analyses without making them less safe.
Design justification. FineMOP’s six analyses—Fine, Hybrid, Hy-
bridNoP, Mthd, MthdNoP, and MthdFM—reason about methods
or fields. We do not yet explore statement-level reasoning because
all statements are in methods or field declarations. To compen-
sate for potential safety loss due to finer-grained analyses, three
of FineMOP’s six analyses “project” reasoning results onto classes.
FineMOP integrates all 12 class-level analyses from prior work [73].
But, 72 combinations (six FineMOP analyses times twelve class-
level analyses) are hard to evaluate at scale and present. So, we
only evaluate FineMOP’s analyses with 𝑝𝑠𝑐1—the fastest safe-by-
design class-level analysis—and 𝑝𝑠𝑐ℓ3 —the fastest unsafe-by-design
one. The rationale is that if FineMOP’s analyses can safely speed
up 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 , our results are likely to generalize to the other
slower safe- or unsafe-by-design class-level analyses. §4.2 makes
recommendations on how to choose among FineMOP’s analyses.

3.2 Overview

Figure 4 shows the high-level workflow of evolution-aware RV.
1. Compute changes. DiffFinder finds program elements that
changed. It computes checksums of elements in the new revi-
sion, compares them with those in the old revision, and returns
new, changed, deleted, or unchanged elements. DiffFinder cleans
debug-related information in bytecode before computing check-
sums, so elements where, e.g., only line numbers or white space
were modified are ignored. Deleted elements have no checksums
in the new revision, but do not require special handling: only el-
ements present in the new revision are used in subsequent steps.
Rationale: if events for spec 𝑠 were signaled from element 𝑒 in the
old revision, deleting 𝑒 means that there can be no new 𝑠 events (or
violations) from 𝑒 in the new revision. If deleting 𝑒 required modi-
fying another non-deleted element 𝑒′, that modification is handled
like any other change. Moved elements are treated as deleted from
the old location and added to the new. DiffFinder–used in Hybrid,
HybridNoP, Mthd, MthdNoP, and MthdFM–does not handle
refactoring, which is not precise. But, Fine performs additional
reasoning over program changes, and handles some refactoring.
Future work can use the checksum algorithm in refactoring-aware
Reks [109] to handle more refactorings.

In SoTA 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 (§2, §3.1), DiffFinder compares check-
sums for classes, and outputs classes. In Fine, DiffFinder com-
pares checksums for fields, methods, and classes, but returns classes

3

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

Algorithm 1 Generic evolution-aware RV algorithm for Figure 4
Inputs: S: set of specs, E: program elements in new revision,
M: metadata, a (elemToChecksum, dg, elemToSpecs) triple where
elemToChecksum = {𝑒 → checksum(𝑒) | 𝑒 ∈ E}, dg = dependency
graph, and elemToSpecs = {𝑒 → 𝑆 | 𝑒 ∈ E ∧ 𝑆 ⊆ S},
v: a triple of binary values (opt, excludeLib, excludeNonImpacted)

Output: a set of violations
1: procedure remonitor(S, E,M, v):
2: 𝐸new, 𝐸changed, 𝐸all ← getDiff (E,M) ⊲ Algo 2
3: M.dg← buildDependencyGraph (E)
4: 𝐸impacted ← findImpacted(𝐸new ∪ 𝐸changed,M.dg, v.opt) ⊲ Algo 3
5: 𝑆affected ← computeAffectedSpecs(𝐸impacted,M) ⊲ Algo 4
6: 𝐸instr ← 𝐸impacted
7: if !v.excludeLib then 𝐸instr ← 𝐸instr ∪ getLibElements()
8: if !v.excludeNonAffected then 𝐸instr ← 𝐸instr ∪ (𝐸all \ 𝐸impacted)
9: return monitor(𝑆affected, 𝐸instr)

after reasoning about the semantics of the change. In Hybrid and
HybridNoP, DiffFinder compares checksums for classes andmeth-
ods; Hybrid returns classes, HybridNoP returns methods. Finally,
in Mthd, MthdNoP, and MthdFM, DiffFinder compares check-
sums for methods and returns methods.
2. Build dependency graphs. GraphBuilder creates dependency
graphs with edge from node X to Y if X depends on Y. In 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 ,

GraphBuilder creates class-level graphs. In Mthd, MthdNoP, and
MthdFM, GraphBuilder creates method-level graphs with edges
from callers to callees. In Hybrid and HybridNoP, GraphBuilder
creates method- and class-level graphs. In Fine, GraphBuilder
creates a class-level dependency graph. Class-level graphs have an
edge from class X to class Y if X uses or inherits from Y.
3. Find impacted program elements. ImpactFinder returns a
change impact set consisting of program elements whose nodes
reach nodes for changed or new elements in the reflexive and
transitive closure of the dependency graph. In Hybrid, the impacted
elements are computed using the method- and class-level graphs.
Other analyses use the graph from GraphBuilder.
4. Find affected specs. SpecsFinder returns, as affected, the subset
of specs whose events are generated in impacted elements. To do
so, SpecsFinder maps each element 𝑒 to specs instrumented into 𝑒
in the new revision. SoTA 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 , and Mthd, Hybrid, Fine,

map classes to specs. Other analyses map methods to specs.
5. Configure and run RV. Based on Config, FineMOP configures
RV and monitors affected specs in the new revision. All options
instrument affected specs in impacted elements. Some options cause
𝑋 ∈ {Mthd, Hybrid, Fine, MthdNoP, HybridNoP, MthdFM}
to not instrument (i) non-impacted elements in the code under
test (CUT), denoted 𝑋𝑐 ; (ii) all elements in libraries, denoted 𝑋 ℓ ;
or (iii) non-impacted CUT elements and all elements in libraries,
denoted 𝑋𝑐ℓ . Lastly, FineMOP re-monitors only affected specs.

3.3 A generic evolution-aware RV algorithm

Algorithm 1 shows the entry point for analyses that implement the
workflow in Figure 4; it is generic in terms of program elements
and §3.4 describes how FineMOP’s analyses instantiate it. Line 2
calls getDiff (explained shortly) to return, as changed, elements
whose checksums differ in the old and new revisions. Procedure

Algorithm 2 Procedure getDiff
Inputs: prgmElmts: a set of program elements, e.g., classes or methods,

M: (elemToChecksum, dg, elemToSpecs) triple
Output: 𝐸all : all elements, 𝐸new : added elements, 𝐸𝛿 : changed elements
Initialization: newCksums← ∅; 𝐸all ← ∅; 𝐸new ← ∅, 𝐸𝛿 ← ∅
1: procedure getDiff(prgmElmts,M):
2: for all 𝑒 ∈ prgmElmts do

3: 𝐸all ← 𝐸all ∪ {𝑒 }
4: if 𝑒 ∈ M.elemToChecksum.keys() then ⊲ is 𝑒 in old revision?
5: if checksum (𝑒) isM.elemToChecksum [𝑒] then⊲ true if no change
6: newCksums← newCksums ∪ {𝑒 → M .elemToChecksum[𝑒] }
7: else

8: 𝐸𝛿 ← 𝐸𝛿 ∪ {𝑒 }
9: newCksums← newCksums ∪{𝑒 → checksum(𝑒) }
10: else ⊲ 𝑒 was not in old revision
11: 𝐸new ← 𝐸new ∪ {𝑒 }
12: newCksums← newCksums ∪{𝑒 → checksum(𝑒) }
13: M.elemToChecksum← newCksums
14: return 𝐸new, 𝐸𝛿 , 𝐸all

getDiff returns 𝐸new (newly-added elements), 𝐸𝛿 (modified ele-
ments), and 𝐸all (all elements). It is trivial to make getDiff return
𝐸deleted (deleted elements). But, we elide 𝐸deleted because it has no
impact on evolution-aware RV speed, safety, or precision: only
elements in the new revision (E) have nodes in the dependency
graph built on line 3. Next, line 4 computes as impacted 𝐸impacted ,
the union of nodes that (i) are new, i.e., 𝐸new ; (ii) changed, i.e., 𝐸𝛿 ;
(iii) transitively or reflexively depend on 𝐸𝛿 ; and (iv) to which 𝐸𝛿
can transitively pass data. Lines 5 and 6 compute affected specs
(𝑆affected) and an initial set of elements to instrument with those
specs (𝐸instr), respectively. Based on Config, elements in libraries
or non-impacted elements (the complement of 𝐸impacted) are added
to 𝐸instr on lines 7 and 8. Lastly, line 9 re-monitors 𝑆affected in 𝐸instr .

In Algorithm 2, getDiff partitions prgmElmts into three sets,
based on how their checksums (inM) changed since the old revi-
sion. The loop on lines 2–12 classifies each element in prgmElmts.
Line 3 adds each element 𝑒 in the new revision to 𝐸𝑎𝑙𝑙 . If the check-
sum of 𝑒’s cleaned bytecode is unchanged since the old revision
(line 5), that checksum is copied into newCksums on line 6. If 𝑒 is in
both revisions, but its checksums differ, 𝑒 is added to 𝐸𝛿 and its new
checksum is added to newCksums on line 9. If 𝑒 is new, it is added to
𝐸new and its checksum is added to newCksums on line 12. After the
loop terminates, line 13 setsM.elemToChecksum to newCksums for
use in the next revision and line 14 returns getDiff’s outputs.

In Algorithm 3, findImpacted takes 𝐸diff (changed or newly-
added elements) and a dependency graph, and outputs 𝐸impacted ,
elements whose behavior can differ after changes. There, elements
that transitively or reflexively depend on 𝐸diff are always included
in 𝐸impacted (line 3). But, when applied to 𝑝𝑠𝑐1 , line 5 also computes
dependees—elements that 𝐸diff transitively depends on—for safety:
even if they are not changed, elements in 𝐸diff or their dependents
may pass data to dependees and alter RV outcomes.

Algorithm 4 shows how computeAffectedSpecs finds affected
specs, 𝑆affected . First, it instruments all classes containing elements
in 𝐸impacted with all specs (line 2) to obtain instrInfo—triples of
(i) spec name; (ii) instrumented source file; and (iii) line number—per
instrumentation site. Lines 3–7 updateM .elemToSpec and return

4

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Algorithm 3 findImpacted subprocedure
Inputs: 𝐸diff : set of changed or new elements,

dg: dependency graph and opt: closure option
Output: 𝐸impacted : elements impacted by changes to 𝐸diff
Initialization: 𝐸impacted ← ∅
1: procedure findImpacted(𝐸diff , dg, opt):
2: dg−1 ← invert(dg) ⊲ dg−1 is dg with all edge directions reversed.
3: 𝐸impacted ← transitiveClosureOf(dg−1, 𝐸diff)⊲ dependents of 𝐸diff
4: if opt = 𝑝𝑠𝑐1 then ⊲ dependees of dependents of 𝐸diff
5: 𝐸impacted ← transitiveClosureOf(dg, 𝐸impacted)
6: return 𝐸impacted

Algorithm 4 computeAffectedSpecs subprocedure
Inputs: 𝐸impacted : impacted elements, S: all specs,

M: (elemToChecksum, dg, elemToSpecs) triple
Output: 𝑆affected : affected specs
Initialization: 𝑆affected ← ∅
1: procedure computeAffectedSpecs(𝐸impacted ,M):
2: instrInfo← instrument(𝐸impacted , S)
3: for (srcFile, lineNumber, spec) ∈ instrInfo do

4: 𝑒 ← elementAt(srcFile, lineNumber)
5: M .elemToSpecs[𝑒] ← M .elemToSpecs[𝑒] ∪ {spec}
6: for all 𝑒 ∈ 𝐸impacted do 𝑆affected ← 𝑆affected∪ M.elemToSpecs[𝑒]
7: return 𝑆affected

𝑆affected as specs instrumented in any 𝑒 ∈ 𝐸impacted . elementAt (not
shown) returns the class or method containing its arguments.

SoTA 𝑝𝑠𝑐1 and 𝑝𝑠
𝑐ℓ
3 instantiate these generic algorithms straight-

forwardly, using only classes as program elements, and setting
𝑣 = (𝑝𝑠𝑐1, 0, 1) and 𝑣 = (𝑝𝑠𝑐ℓ3 , 1, 1), respectively in Algorithm 1.
We discussed 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 in §2 and §3.1. Next, we discuss how
FineMOP’s analyses instantiate Algorithms 2–4.

3.4 Instantiating the generic algo in FineMOP

§3.4.1, §3.4.2, and §3.4.3 respectively discuss how Mthd (and its
two variants), Hybrid (and its one variant), and Fine instantiate
the generic algorithms, using Figure 3 as a running example.

3.4.1 Mthd and its two variants. Challenges of method-level spec
selection include: (i) constructing and reasoning about method-
level dependency graphs that are often much larger than class-level
graphs for the same project; (ii) mapping specs to methods is costlier
than mapping them to classes; and (iii) for some changes, analysis
time is high enough to make method-level analysis slower than
class-level analyses. We address these challenges using three anal-
yses with different trade-offs: Mthd, MthdNoP, and MthdFM.
For all three, E (Algorithm 1) and prgmElmts (other algorithms)
contain only methods. Also, elemToChecksum in Algorithm 2 maps
methods to their checksums, and getDiff and findImpacted out-
put sets of methods. The main differences amongMthd, MthdNoP,
and MthdFM are in computeAffectedSpecs (Algorithm 4):
1. Mthd: elemToSpecs maps each class that contains method
𝑚 ∈ 𝐸impacted to specs that are instrumented into 𝑚’s enclosing
class. That is, elementAt on line 4 in Algorithm 4 returns the class
of each instrumentation site like INSTR : STHM.next on line 4 in
Figure 2. The benefit of Mthd over 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 (§2, §3.1, [73, 112])

is that specs that only have events in classes that do not transitively

Algorithm 5 getDiff subprocedure for Fine
Inputs: E: classes,M: (classToChecksum, dg, classToSpecs) triple
Output:𝐶all : all classes,𝐶new : added classes,𝐶𝛿 : changed classes
Initialization: newM← ∅;𝐶all ← ∅;𝐶new ← ∅,𝐶𝛿 ← ∅
1: procedure getDiff(E,M):
2: for all 𝑐 ∈ E do

3: 𝐶all ← 𝐶all ∪ {𝑐 }
4: newM← newM ∪ {𝑐 → newMetadataForClass(𝑐)}
5: if 𝑐 ∈ M.keys then ⊲ 𝑐 is in the old revision
6: if newM [𝑐] =M[𝑐] then ⊲ true if no change
7: else if isModified(M, newM, 𝑐) then𝐶𝛿 ← 𝐶𝛿 ∪ {𝑐 }
8: else𝐶new ← 𝐶new ∪ {𝑐 } ⊲ Class did not exist in the old revision
9: M← newM
10: return𝐶new,𝐶𝛿 ,𝐶all

Inputs:M: same asM in getDiff,𝐶new : same asM, 𝑐 : class
Output: 𝑡𝑟𝑢𝑒 if change can alter functionality, else 𝑓 𝑎𝑙𝑠𝑒
11: procedure isModified(M, newM, 𝑐):
12: //Determine whether the change alters behavior.
13: for all 𝑓 ∈ getFields(𝑐) do
14: if fldChanged(M[𝑐][𝑓], newM [𝑐][𝑓]) then return true

15: for all 𝑛 ∈ getConstructorsAndInits(𝑐) do
16: if conChanged(M[𝑐][𝑛], newM [𝑐][𝑛]) then return true

17: for all𝑚 ∈ getMethods(𝑐) do
18: if mtdChanged(M[𝑐][𝑚], newM [𝑐][𝑚]) then return true

19: return false

depend on impacted methods are not re-monitored. In Figure 3,
Mthd re-monitors only S1–S4, saving the cost to monitor S5 that
𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 incur.Mthd re-monitors S4 because it projectsmethod-

level reasoning to classes to be safer, so it returns B as affected.
2.MthdNoP: elemToSpecsmaps from eachmethod𝑚 ∈ 𝐸impacted
to specs that are instrumented into 𝑚, i.e., elementAt returns
the enclosing method of each instrumentation site. The benefit
of MthdNoP over Mthd is that specs that only have events in
methods that are not in 𝐸impacted are not re-monitored. In Figure 3,
by avoiding such projection, MthdNoP re-monitors only S1–S3;
B.m1 that has S4 events is not affected by the change.
3. MthdFM: elemToSpecs is same as MthdNoP’s, but MthdFM
applies an optimization to MthdNoP: by default, monitor instru-
ments all classes containing an 𝑒 ∈ 𝐸impacted . But MthdFM resets
Config on the fly (not shown) to only signal events from 𝐸impacted
at runtime. The benefit of MthdFM over MthdNoP is that events
in methods that are not in 𝐸impacted are not signaled at runtime,
saving the time to monitor them. In Figure 3, MthdFM also re-
monitors S2, but it re-monitors S1 only in method C.m1 and S3 only
in method B.m2, because the other two methods, A.m1 and B.m1, that
may generate events for S1 and S3 are not in 𝐸impacted .

3.4.2 Hybrid and its one variant. The main difference between
Hybrid and Mthd is in remonitor (Algorithm 1). There, Hybrid
invokes getDiff twice, once with E as the set of classes, and once
again with E as the set of methods. Hybrid mixes analysis granu-
larities based on the change, for efficiency, e.g., if classes are added
or deleted, class-level reasoning is likely faster. But, if only methods
are modified, method-level may be more precise and faster than
the purely class-level analyses that 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 use.

5

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

Both calls from Hybrid to getDiff return six sets: 𝐶all (all
classes), 𝐶new (newly-added classes), 𝐶𝛿 (changed classes),𝑀all (all
methods), 𝑀new (newly-added methods), and 𝑀changed (changed
methods). These are used in findImpacted to find 𝐸impacted . Hy-
brid projects analysis results to the class level, but Hybrid’s
variant—HybridNoP—does not. Also, Hybrid’s elemToSpecs
maps classes to specs, but HybridNoP’s elemToSpecs maps meth-
ods to specs. HybridNoP does not project method-level reasoning
to classes, so it can be faster than Hybrid by not re-monitoring af-
fected specs in unaffected methods. In Figure 3, Hybrid re-monitors
S1–S4, but HybridNoP only re-monitors S1–S3: B.m1 is unchanged.

3.4.3 Fine. Unlike all other FineMOP analyses, Fine uses getDiff
in Algorithm 5 because its metadata M is different and maps
each class 𝐶 to a triple (𝐹, 𝑁 ,𝑀), that maps fields and callables—
constructors, initializers, and methods—in 𝐶 to custom data struc-
tures [78]. Fine is the first to use these data structures to determine
if the semantics of bytecode-level changes can alter RV outcomes.

Algorithm 5 takes E as the set of classes. But, when checking if
𝐶 is modified (line 7), bytecode-modifying changes to each class
member are analyzed against 13 rules from [78] on lines 13–18
to see if those changes can alter RV outcomes. If all changes to
fields and callables in 𝐶 cannot alter RV outcomes, 𝐶 is treated as
not changed (line 19). Doing so can be more beneficial than other
algorithms if these are the only kind of changes in a revision. In
Figure 3, Fine re-monitors S1, S3, S4, and S5; unlike 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 ,

it does not re-monitor S2 because the change to A.m2 cannot lead to
new violations. Fine does not have variants. We hypothesize that
such Fine variants would be slower than Fine, as they must also
additionally collect method-level dependencies.

Some interdependencies make it hard to instantiate the generic
algorithm in other ways. For example, “NoP” requires amethod-level
dependency graph, but Fine reasons about method-level changes
without using a graph. So, Fine cannot be combined with “NoP”.
Also, “FM” depends on “NoP”, so Fine plus “FM” is hard.

3.4.4 Summary: features of class-level and FineMOP analyses. Ta-
ble 1 summarizes features (header row) in all analyses (first column)
in this paper. Each FineMOP analysis is annotated with the same su-
perscripts and subscript as the class-level analyses (𝑝𝑠𝑐1 or 𝑝𝑠

𝑐ℓ
3) that

it is applied to. We will use this annotation for these FineMOP anal-
yses in the rest of this paper. §3.1 and §3.2 describe superscripts
𝑐 and 𝑙 , and introduce subscripts 1 and 3 as the most and least
conservative change-impact analyses for evolution-aware RV [73],
respectively. The change-impact analysis marked as 1 leads to re-
monitoring specs with events in (i) changed program elements (𝐸𝛿),
(ii) dependents of 𝐸𝛿 , (iii) dependees of 𝐸𝛿 , and (iv) dependees of
dependents of 𝐸𝛿 . In contrast, the change-impact analysis marked
as subscript 3 leads to re-monitoring only specs with events in (i) 𝐸𝛿
and (ii) dependents of 𝐸𝛿 .

3.5 Implementation

We implement FineMOP as a Maven plugin. We extend STARTS [72,
105] using JavaParser [52] and ASM [7] to reason about method-
level, field-and-method-level, and semantics-modifying changes.
FineMOP uses STARTS to find classes or methods impacted by
changes and uses AspectJ to find specs to re-monitor. Lastly,

Table 1: Features of all analyses in this paper. 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3
are SoTA class-level analyses we evaluate. Other rows mark

FineMOP’s six analyses with the same superscripts and sub-

script (explained in the text) as the class-level analyses that

we apply them to. ✓: feature is present. ✗: feature is absent.
Class level
analysis

Method level
analysis

Library
instrumentation

Semantics
reasoning

Finer spec
mapping

Finer
monitoring

𝑝𝑠𝑐1 ✓ ✗ ✓ ✗ ✗ ✗

Fine𝑐1 ✓ ✗ ✓ ✓ ✗ ✗

Hybrid𝑐1 ✓ ✓ ✓ ✗ ✗ ✗

HybridNoP𝑐1 ✓ ✓ ✓ ✗ ✓ ✗

Mthd𝑐1 ✗ ✓ ✓ ✗ ✗ ✗

MthdFM𝑐
1 ✗ ✓ ✓ ✗ ✓ ✓

MthdNoP𝑐1 ✗ ✓ ✓ ✗ ✓ ✗

𝑝𝑠𝑐ℓ3 ✓ ✗ ✗ ✗ ✗ ✗

Fine𝑐ℓ3 ✓ ✗ ✗ ✓ ✗ ✗

Hybrid𝑐ℓ3 ✓ ✓ ✗ ✗ ✗ ✗

HybridNoP𝑐ℓ3 ✓ ✓ ✗ ✗ ✓ ✗

Mthd𝑐ℓ3 ✗ ✓ ✗ ✗ ✗ ✗

MthdFM𝑐ℓ
3 ✗ ✓ ✗ ✗ ✓ ✓

MthdNoP𝑐ℓ3 ✗ ✓ ✗ ✗ ✓ ✗

Table 2: Statistics on 68 projects that we evaluate: no. of test

methods (#tests), test time w/o RV in seconds (t), test time

withRV in seconds (𝑡 rv), lines of code (SLOC), % statement cov-

erage (𝑐𝑜𝑣𝑠), % branch coverage (𝑐𝑜𝑣𝑏), no. of commits (#SHAs),

years since first commit (age), and no. of stars (#8).

#tests t 𝑡 rv SLOC 𝑐𝑜𝑣𝑠 𝑐𝑜𝑣𝑏 #SHAs age #8

Mean 223.9 7.1 77.7 11,672.8 64.4 56.0 476.2 10.1 475.3
Med 83.5 4.1 65.0 3,775.5 68.1 60.0 199.0 10.0 63.0
Min 2 2.2 7.7 312 0.4 0.3 10 2 6
Max 4,232 36.4 546.8 2.1×105 99.2 99.3 4,890 27 12,292
Sum 15,222 481.7 5,280.4 7.9×105 n/a n/a n/a n/a 32,320

FineMOP updates AspectJ’s config file to avoid re-monitoring non-
affected specs. For MthdFM, FineMOP uses AspectJ to dynamically
exclude un-impacted methods from monitoring.

4 Evaluation

We organize our evaluation around five research questions (RQs):
RQ1. What is FineMOP’s overhead vs. JavaMOP, 𝑝𝑠𝑐1 , and 𝑝𝑠

𝑐ℓ
3 ?

RQ2. How precise is FineMOP compared with 𝑝𝑠𝑐1 , and 𝑝𝑠
𝑐ℓ
3 ?

RQ3. How safe is FineMOP compared with 𝑝𝑠𝑐1 , and 𝑝𝑠
𝑐ℓ
3 ?

RQ4. How does FineMOP compare with RTS?
RQ5. How beneficial is combining FineMOP with RTS?
RQ1 compares FineMOP’s overheads vs. those of SoTA evolution-
unaware JavaMOP and evolution-aware class-level analyses, 𝑝𝑠𝑐1
and 𝑝𝑠𝑐ℓ3 (§2, §3.1, [73, 112]). RQ2 investigates the degree to which
FineMOP reduces 𝑝𝑠𝑐1 ’s and 𝑝𝑠

𝑐ℓ
3 ’s affected specs, impacted classes,

monitors, events, and instrumentation. RQ3 evaluates if FineMOP’s
speedups and precision are at the expense of missing violations
that are new after a change. RQ4 compares overheads of FineMOP
alone vs. those of combining four RTS techniques with 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 .

Lastly, RQ5 evaluates the benefits of combining FineMOP with RTS.

4.1 Experimental Setup

Evaluation subjects and revisions. We use 1,104 revisions of 68
open-source projects; Table 2 summarizes these projects’ statistics
(“n/a” are meaningless sums). We start with all 80 projects in [38]

6

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Java
MO

P
𝑝𝑠
𝑐
1 Fine

𝑐
1

Hyb
rid

𝑐
1
Hyb

ridN
oP
𝑐
1
Mth

d𝑐1
Mth

dFM
𝑐
1
Mth

dNo
P𝑐1

Bes
t𝑐1

𝑝𝑠
𝑐ℓ
3 Fine

𝑐ℓ
3

Hyb
rid

𝑐ℓ
3
Hyb

ridN
oP
𝑐ℓ
3
Mth

d𝑐
ℓ
3

Mth
dFM

𝑐ℓ
3
Mth

dNo
P𝑐
ℓ
3

Bes
t𝑐
ℓ
3

4
6
8
10
12 10.95

9.24 8.85
7.62

6.02
7.52

9.48

5.69 5.53 4.9 4.91 4.37 4.25 4.37 4.3 4.18 3.79

10.54

8.22 7.9
7.17

5.57
7.03 6.78

5.23 5.09 4.53 4.47 4.1 4.03 4.06 4.01 3.93 3.78

Re
la
tiv

e
ov
er
he
ad All projects

w/o 10 instrumentation-dominated projects

Figure 5: Cummulative overheads of JavaMOP (left), 𝑝𝑠𝑐1 and FineMOP plus 𝑝𝑠𝑐1 (middle), 𝑝𝑠𝑐ℓ3 and FineMOP plus 𝑝𝑠𝑐ℓ3 (right),

relative to running tests without RV, for all projects (teal) and with 10 instrumentation-dominated projects excluded (orange).

Figure 6: Best-performing analysis applied to 𝑝𝑠𝑐1 vs. 𝑝𝑠
𝑐
1 (1.0 on y-axis). Green: 10 projects exluded from orange bars in Figure 5.

Figure 7: Best-performing analysis applied to 𝑝𝑠𝑐ℓ3 vs. 𝑝𝑠𝑐ℓ3 (1.0 on y-axis). Green: 10 projects exluded from orange bars in Figure 5.

where monitoring (not instrumentation) dominates RV overhead
and JavaMOP time is greater than 10 seconds. We use only 33
of these. Of those excluded, 28 have fewer than three historical
revisions where JavaMOP works, three fail to compile, and tests fail
in 16. We also use 35 projects from [39] where RV overhead is most
dominated by instrumentation. For all 68 projects, we choose up to
20 historical revisions where Java file(s) changed, code compiles,
and tests pass with and without JavaMOP.
Specs. We use 160 specs of correct JDK API usage that were for-
malized by Lee et al. [67, 80] and used in all recent work on RV of
software tests [37–40, 53, 61, 62, 68, 70, 71, 73, 85, 112].
Baseline Tools. We use the modernized and refactored JavaMOP
in the TraceMOP repository [40, 106] which also merges Java-
MOP [49, 55] and RV-Monitor [50, 80] code, fixes a 13-year old
performance bug [51], and reduces duplication. We use 𝑝𝑠𝑐1 and
𝑝𝑠𝑐ℓ3 from eMOP [27, 112], but we extend them to add library classes
to dependency graphs. We use Ekstazi [33, 34], FineEkstazi [78],
FineSTARTS [78], and STARTS [69, 72] for RTS experiments.
Running Experiments. We write Maven extensions and scripts
to integrate FineMOP in evaluated projects. We run all experiments
in Docker containers; our repository has our Dockerfiles. We run
all experiments for each project on one of three machines: (i) Intel®
Xeon® w9-3475X CPU, 128 GB RAM; (ii) Intel® Xeon® Gold 6348
machine, 512 GB RAM; (iii) AMD EPYC™ 9654 machine, 1.5 TB
RAM, running Java 8 and Maven 3.9 on Ubuntu (20.04 or 24.04).

4.2 RQ1: Overheads

Figure 5 shows cumulative relative overheads of JavaMOP (left),
𝑝𝑠𝑐1 and FineMOP applied to 𝑝𝑠𝑐1 (middle), and 𝑝𝑠𝑐ℓ3 and FineMOP
applied to 𝑝𝑠𝑐ℓ3 , respectively. Cumulative relative overhead is the
sum of time to run RV in all 1,104 revisions of 68 projects divided
by sum of time to run tests without RV in these versions.
FineMOP analyses vs. JavaMOP, 𝑝𝑠𝑐1 , and 𝑝𝑠𝑐ℓ3 . The teal bars
in the middle of Figure 5 show that, cumulatively, MthdNoP𝑐1 is
fastest when applied to 𝑝𝑠𝑐1 ; it is ∼2x faster than JavaMOP. Per
project, MthdNoP𝑐1 is up to 6.77x faster than JavaMOP (avg: 2.09x)
and up to 4.86x faster than 𝑝𝑠𝑐1 (avg: 1.7x). Teal bars in the right
of Figure 5 show that MthdNoP𝑐ℓ3 is also the fastest cumulatively
when applied to 𝑝𝑠𝑐ℓ3 , taking only 38.0% of JavaMOP time. Per
project, MthdNoP𝑐ℓ3 is up to 7.31x faster than JavaMOP (avg: 2.87x)
and up to 4.47x faster than 𝑝𝑠𝑐ℓ3 (avg: 1.18x). Overall, FineMOP
speeds up 𝑝𝑠𝑐1 more than 𝑝𝑠𝑐ℓ3 , which is quite fast. MthdFM𝑐

1 is
the slowest cumulatively when applied to 𝑝𝑠𝑐1 ; it is slower than
𝑝𝑠𝑐1 because for 10 projects where instrumentation dominates RV
overhead, the extra cost to disable monitoring in methods 𝑚 ∉

𝐸impacted is high. Orange bars in Figure 5 show results without these
10; the across-the-board speedup shows a need for future work to
make FineMOP faster in instrumentation-dominated projects.
Best-performing FineMOP analysis per project. We run all
FineMOP analyses in all revisions of each evaluated project, and
select the fastest and safe one as best-performing for that project.

7

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

Figure 8: JavaMOP, eMOP, and FineMOP’s overhead during evolution. Red lines represent JavaMOP, 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 (yellow and

green), and best performing FineMOP techniques Best
𝑐
1 and Best

𝑐ℓ
3 (blue and cyan).

Figure 9: How frequently each FineMOP analyis is one of

the three fastest. Numbers outside (inside) parentheses are

counts when FineMOP analyses are applied to 𝑝𝑠𝑐1 (𝑝𝑠
𝑐ℓ
3).

When applied to 𝑝𝑠𝑐1 , Best
𝑐
1 in Figure 5 is the cumulative relative

overhead of FineMOP’s best-performing analysis per project; it is
9.56 hours faster than JavaMOP and 6.44 hours faster than 𝑝𝑠𝑐1 . Also,
Best𝑐ℓ3 —analogous to Best𝑐1—saves 12.3 and 1.29 hours, compared
to JavaMOP and 𝑝𝑠𝑐ℓ3 , respectively. Figure 6 shows the ratio of
Best𝑐1 to 𝑝𝑠𝑐1 time per project; lower is better. The 𝑦 = 1.0 line
represents 𝑝𝑠𝑐1 . The number at the bottom of each bar (and mapped
in the legend) shows the Best𝑐1 analysis for each project. Also, green
bars show the 10 projects that we exclude from the orange bars in
Figure 5. In 50 of 68 projects, the best FineMOP algorithm takes
less than 80% of 𝑝𝑠𝑐1 time, and for 14 out of 68 projects, FineMOP is
at least 2x faster than 𝑝𝑠𝑐1 . Figure 7 shows analogous results ratio
for Best𝑐ℓ3 . There, only 13 of 68 projects take less than 80% of 𝑝𝑠𝑐ℓ3
time, but two projects still see at least a 2x speedup.
Which FineMOPanalysis should be the default? Figure 9 shows
how often each FineMOP analysis performs best (1), second (2), or
third (3) when applied to 𝑝𝑠𝑐1 (𝑝𝑠

𝑐ℓ
3). MthdNoP performs best most

often for 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 . When FineMOP is applied to 𝑝𝑠𝑐1 , Fine
𝑐
1,

HybridNoP𝑐1, Mthd𝑐1, MthdFM𝑐
1, MthdNoP𝑐1 are the fastest in 2,

10, 2, 6, 48 projects, respectively. 𝑝𝑠𝑐1 and Hybrid𝑐1 are never the
fastest in our evaluation. When FineMOP is applied to 𝑝𝑠𝑐ℓ3 , Fine𝑐ℓ3 ,
Hybrid𝑐ℓ3 , HybridNoP𝑐ℓ3 , Mthd𝑐ℓ3 , MthdFM𝑐ℓ

3 , and MthdNoP𝑐ℓ3
are the fastest for 4, 12, 7, 14, 10, and 20 projects, respectively. 𝑝𝑠𝑐ℓ3 is
fastest for one project. FineMOP’s less conservative change-impact
analysis misses violations in only one project (P25). Each FineMOP
analysis is the best-performing at least twice when applied to 𝑝𝑠𝑐1
or 𝑝𝑠𝑐ℓ3 , further justifying our design choice to implement multiple
analyses in FineMOP. Overall, based on these findings, we recom-
mend MthdNoP𝑐1 as the default FineMOP analysis: it optimizes
safe-by-design 𝑝𝑠𝑐1 and it is most often the fastest without safety
issues in our experiments.
How to choose FineMOP analysis for a new project?We rec-
ommend to run all FineMOP analyses in the first revision, and
choose the best-performing analysis in that revision subsequently.
Our per-project analysis (our appendix has details) suggests two

reasons why this strategy might work well in practice. First, the
best-performing analysis in the first revision remains the best or
second best in all subsequent revisions in 48 of 68 evaluated projects.
Second, even when the best-performing analysis in the first revision
later becomes second best, the loss in speedup is only 9.3 percent-
age points on average per project, or 3.50 seconds per revision.
Users who prefer not to incur the one-time cost of finding the best-
performing analysis for their project can use our recommended
default: MthdNoP𝑐1.
FineMOP’s runtime overhead as code evolves. Figure 8 shows
the overheads of JavaMOP, 𝑝𝑠𝑐1 , 𝑝𝑠

𝑐ℓ
3 , and FineMOP applied to 𝑝𝑠𝑐1

and 𝑝𝑠𝑐ℓ3 for each evaluated revision in three projects (our appen-
dix has plots for all projects). The area under each curve is the
total time across all revisions per technique. Older revisions are to
the left of newer ones. In datasource − proxy (left), FineMOP’s
best-performing analysis is almost always faster than 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 .

For gelly − streaming (middle), FineMOP outperforms 𝑝𝑠𝑐1 , but
is only slightly faster than 𝑝𝑠𝑐ℓ3 . In javadbf (right), FineMOP is
occasionally slower than 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 , and FineMOP, 𝑝𝑠𝑐1 , and 𝑝𝑠

𝑐ℓ
3

are often slower than JavaMOP. But, FineMOP is faster than 𝑝𝑠𝑐1
and 𝑝𝑠𝑐ℓ3 overall. Evolution-aware RV often performs poorly when
JavaMOP is fast, when a project makes frequent major changes, or
due to regular library updates. 25, 16, and 4 projects have similar
trends as those on the left, center, and right, respectively.
When does each FineMOP analysis perform best? We con-
duct a preliminary qualitative analysis by manually analyzing
146 revisions in 43 projects where a FineMOP analysis outper-
forms others. Fine tends to perform best when most or all of the
semantics-modifying changes in a revision cannot lead to new vio-
lations. When Hybrid and HybridNoP perform best, they do so
only marginally. But, if (i) method-level dependencies are complex
and (ii) the changes mix class-level changes (like class deletion or
addition) with finer-granularity changes, Hybrid and HybridNoP
tend to outperform other FineMOP analysis by avoiding unneces-
sary and costly traversal of the method-level graph, and outperform
𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 by precisely re-monitoring fewer unaffected specs.

MthdFM tends to perform best when (i) many events and moni-
tors are generated in methods that MthdFM does not instrument
with affected specs or (ii) the project has few instrumentation lo-
cations, especially if frequent changes are made to methods with
events for many affected specs. In such cases, MthdFM’s high pre-
cision pays off. But, MthdFM performs poorly when the absolute
reduction in events and monitors is small or when a project has
many instrumentation points. In such cases, MthdNoP tends to be

8

https://www.github.com/jdbc-observations/datasource-proxy
https://www.github.com/vasia/gelly-streaming
https://www.github.com/albfernandez/javadbf

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 3: Average percentage of 𝑝𝑠𝑐1 (left) and 𝑝𝑠𝑐ℓ3 (right) peak memory used (Mem.), affected specs (Specs), impacted classes

(Classes), monitors synthesized (Mon.), events signaled (Events), and lines instrumented (Instr.) by FineMOP’s analyses.

Fine𝑐1 Hybrid𝑐1 HybridNoP𝑐1 Mthd𝑐1 MthdFM𝑐
1 MthdNoP𝑐1 Fine𝑐ℓ3 Hybrid𝑐ℓ3 HybridNoP𝑐ℓ3 Mthd𝑐ℓ3 MthdFM𝑐ℓ

3 MthdNoP𝑐ℓ3
Mem. 99.39 97.70 78.42 97.59 84.43 76.86 99.38 99.33 102.30 103.15 111.20 109.37
Specs 96.87 96.17 70.2 94.29 67.0 67.0 96.14 92.47 73.52 89.98 70.09 70.09
Classes 93.59 86.97 86.97 72.21 72.21 72.21 88.84 69.44 69.44 57.8 57.8 57.8
Mon. 96.57 97.75 70.27 97.5 64.22 66.42 99.0 99.16 99.26 99.19 99.1 99.22
Events 96.51 97.93 70.02 97.78 63.79 66.47 98.97 99.19 99.22 99.18 99.11 99.24
Instr. 96.19 96.14 70.81 95.14 66.58 66.58 96.93 95.28 90.13 96.18 90.09 90.09

the better choice. Mthd is generally slower than MthdNoP. In the
few cases where Mthd appears faster than MthdNoP, the differ-
ence is only a few seconds and may be due to experimental noise.
In sum, MthdFM tends to perform best for small projects where
developers make frequent and localized changes in methods con-
taining many events. Otherwise, MthdNoP typically outperforms
MthdFM. HybridNoP generally performs better than Hybrid. Just
like with Mthd and MthdNoP, the reason is that the “NoP” opti-
mization yields more precision that pays off in majority of projects.
Memory overheads. The first row in Table 3 shows average mem-
ory overhead of FineMOP’s analysis relative to 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 . Apply-

ing FineMOP to 𝑝𝑠𝑐1 saves more memory than applying FineMOP to
𝑝𝑠𝑐ℓ3 . In fact, FineMOP uses more memory than 𝑝𝑠𝑐ℓ3 in most cases.
The most memory efficient FineMOP analysis reduces 𝑝𝑠𝑐1 ’s peak
memory use by 2.05 GB. But, the analysis with the worst additional
memory use increases 𝑝𝑠𝑐ℓ3 ’s peak memory by 532.48 MB.

4.3 RQ2: Precision

We measure the degree to which FineMOP reduces the number of
affected specs that class-level analyses (𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3) re-monitor
after changes. We also measure the effect of that reduction on the
number of impacted classes, monitors created, events signaled, and
instrumented code locations in FineMOP vs. 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 .

The second row in Table 3 shows the average percentage of af-
fected specs in 𝑝𝑠𝑐1 (left) and 𝑝𝑠

𝑐ℓ
3 (right) that all six FineMOP anal-

yses find. (MthdNoP and MthdFM are equal). There, MthdNoP𝑐1
and MthdNoP𝑐ℓ3 re-monitor the lowest proportion of 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3

affected specs—only 67.0% and 70.09%, respectively, on average.
MthdNoP finds 28.1% fewer specs (17.8 per revision) than Mthd,
HybridNoP finds 26.5% fewer specs (16.9 per revision) than Hybrid,
and Hybrid and Mthd select a similar number of specs.

The third row in Table 3 shows the average percentage of im-
pacted classes in 𝑝𝑠𝑐1 (left) and 𝑝𝑠𝑐ℓ3 (right) that FineMOP finds.
Hybrid and HybridNoP are equal, as are Mthd, MthdNoP, and
MthdFM: elements in these sets use the same change-impact anal-
yses. Mthd𝑐1 and MthdNoP𝑐ℓ3 find the fewest impacted classes on
average, only 72.21% (min: 32.02%) of 𝑝𝑠𝑐1 ’s, and 57.8% (min: 16.76%)
of 𝑝𝑠𝑐ℓ3 ’s. That is, reasoning about changes at the method-level is
more precise than reasoning with Fine and Hybrid.

The fourth and fifth rows in Table 3 show the average percentage
of monitors created and events signaled in 𝑝𝑠𝑐1 (left) and 𝑝𝑠

𝑐ℓ
3 (right)

that FineMOP analyses find. MthdFM𝑐
1 creates the fewest monitors

and signals the fewest events, yet it is the slowest when FineMOP
is applied to 𝑝𝑠𝑐1 because the extra cost to disable monitoring (see
§4.2) outweighs savings from signaling fewer events. MthdNoP𝑐1
has the next fewest monitors created and events signaled, which
is notable because it achieves the greatest overall time savings

relative to 𝑝𝑠𝑐1 . We see also that FineMOP only marginally reduces
𝑝𝑠𝑐ℓ3 ’s monitors and events on average. This marginal reduction
likely contributes to the similarity in the greater distribution of best-
performing FineMOP analyses when applied to 𝑝𝑠𝑐ℓ3 in Figure 9.

Lastly, row six in Table 3 shows average percentages of locations
instrumented by 𝑝𝑠𝑐1 (left) and 𝑝𝑠𝑐ℓ3 (right) that FineMOP instru-
ments. The differences among FineMOP analyses almost mirror
those for affected specs (second row). Since only affected specs are
used for instrumentation in a new program revision, the fewer the
affected specs, the fewer code locations are instrumented.

4.4 RQ3: Safety

Setup. An evolution-aware RV technique is safe if it finds all new
violations after changes [73]. The assumption is that users only
want to see new violations, and are aware of old ones. To compute
the ratio of new violations that FineMOP analyses find to those of
𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 , we use Violation Message Suppression (VMS) [73] in

eMOP [112], as the ground truth. VMS aims to filter out old viola-
tions as those that are the same in the old and new revisions, after
syntactically mapping lines across versions. Since syntactic line
mapping [2, 86] is unsound in general, and semantic line mapping is
a hard problem [3, 104], VMS often reports old violations as new. So,
we report the number of new violations found by VMS but missed
by a FineMOP analysis before (pre) and after (post) manual inspec-
tion, during which we filter out seemingly missed new violations
that are due to (i) VMS limitations or bugs, (ii) non-deterministic
test executions, and (iii) a known bug in eMOP [36].
Results. Table 4 shows safety results for all six FineMOP analyses
when applied to 𝑝𝑠𝑐1 . The first, third, and fifth rows show numbers
of missed violations, numbers of revisions with a missed violation,
and numbers of projects with an unsafe revision before inspec-
tion, respectively. The second, fourth, and sixth rows show these
numbers after inspection. First column parentheses show totals.

Across 1,104 revisions of 68 projects, VMS finds 943 new vio-
lations. Before manual inspection, Fine𝑐1 seems to miss 70 viola-
tions that 𝑝𝑠𝑐1 finds in 40 revisions of 15 projects. Our inspection
shows that Fine𝑐1 finds the same new violations as 𝑝𝑠𝑐1 . The least
safe, HybridNoP𝑐1, MthdFM𝑐

1, and MthdNoP𝑐1 only miss two new
violations that 𝑝𝑠𝑐1 finds. The percentages of missed new viola-
tions (≤0.32%) and revisions where FineMOP’s analyses are un-
safe (≤0.27%) are small. So, we have initial confidence that finer-
granularity analysis speeds up evolution-aware RV without impact-
ing safety much. §5 discusses future work on improving safety.

We find that all violations missed by some FineMOP analyses
are caused by missing edges in dependency graphs, which happen
because eMOP, which we extend, does not re-instrument libraries
when finding affected specs. So, FineMOP can miss violations if all

9

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

Table 4: Safety of FineMOP relative to 𝑝𝑠𝑐1 (𝑝𝑠
𝑐ℓ
3).

Fine Hybrid HybridNoP Mthd MthdFM MthdNoP

Missed violations pre (of 943) 70 (118) 76 (119) 93 (133) 75 (118) 100 (136) 101 (134)
Missed violations post (of 943) 0 (0) 1 (0) 2 (1) 1 (0) 2 (1) 2 (1)
Unsafe revisions pre (of 1,104) 40 (67) 45 (68) 61 (76) 45 (68) 62 (77) 63 (76)
Unsafe revisions post (of 1,104) 0 (0) 1 (0) 2 (1) 1 (0) 2 (1) 2 (1)
Unsafe projects pre (of 68) 15 (19) 14 (18) 17 (21) 15 (18) 18 (21) 17 (21)
Unsafe projects post (of 68) 0 (0) 1 (0) 2 (1) 1 (0) 2 (1) 2 (1)

Figure 10: Relative overheads of four RTS tools plus JavaMOP

(orange bars), 𝑝𝑠𝑐1 (green bars), and Best
𝑐
1 (pink bars).

events in a violating trace are in a library. Theoretically, graphs can
be incomplete if dynamic language features like reflection make
static analysis miss edges. But, we do not see missed violations due
to dynamic features, and prior work suggests such misses are rare
in practice (only 0.2% of 985 versions of 22 projects on average [69]).

Notably, for method-level dependency graphs, our early imple-
mentation included variants that use fields. We only present results
for variants that do not use fields because they are more efficient
and we do not observe missed violations due to field exclusion.

Numbers in parentheses in Table 4 show safety results for
FineMOP analyses when applied to 𝑝𝑠𝑐ℓ3 . Our inspection shows
that Fine𝑐ℓ3 , Hybrid𝑐ℓ3 , and Mthd𝑐ℓ3 find all violations that 𝑝𝑠𝑐ℓ3
finds. But, Hybrid𝑐ℓ3 , MthdFM𝑐ℓ

3 , and MthdNoP𝑐ℓ3 each miss one
violation that 𝑝𝑠𝑐ℓ3 finds. FineMOP’s analyses miss ≤0.11% of new
violations that 𝑝𝑠𝑐ℓ3 finds in only ≤0.09% of revisions; our inspection
shows that these misses have the same causes as those in 𝑝𝑠𝑐1 .
Performance-safety trade off. Users who are only concerned
with speed, e.g., during pre-commit testing or debugging, can use
the fastest technique for their project, since safety issues are rare
in our experiments (at its worst, FineMOP only misses 0.32% of
violations). But, when safety and performance are both essential,
the fastest and safe technique for a project should be used.

4.5 RQ4: Comparing with RTS

We compare the overheads relative to running tests without RV
of the best-performing FineMOP analysis (Best𝑐1) per project with
those of combining JavaMOP with four regression test selection
(RTS) tools: STARTS [69, 72], Ekstazi [33, 34], FineSTARTS, and
FineEkstazi [78]. RTS aims to speed up regression testing by re-
running only tests impacted by code changes. We evaluate 51 of
68 projects. We could not evaluate the rest due to a known bug in
Ekstazi or FineEkstazi [108]. The relative overheads of JavaMOP,
STARTS, FineSTARTS, Ekstazi, FineEkstazi, and Best𝑐1 are 12.4, 9.4,
8.8, 10.7, 9.3, and 5.8, respectively. Combining JavaMOP with all
four RTS tools is faster than running JavaMOP alone. But despite
running all tests in each revision, FineMOP still outperforms all
combinations of RTS with JavaMOP. Best𝑐1 is up to 12.3x (avg: 1.4x)
faster than the most efficient RTS tool used. Across the 51 projects,
FineMOP is faster than all RTS tools in 34 projects, and faster than

an RTS tool in 43 projects. We conclude that RTS alone does not
provide as much speedup as FineMOP alone. But, both approaches
could be complementary. So, we next evaluate their combination.
4.6 RQ5: Combining with RTS

We combine the four RTS tools in RQ4 with the best-performing
FineMOP analysis per project, as well as class-level 𝑝𝑠𝑐1 and 𝑝𝑠𝑐ℓ3 .
Figure 10 shows the resulting relative overheads. There, the first bar
is JavaMOP alone. The orange bars show overheads of JavaMOP
plus each RTS tool. The green bars show overheads of 𝑝𝑠𝑐1 plus
each RTS tool, and the red bars show overheads of Best𝑐1 plus
RTS. Combining FineMOP with RTS yields even more speedups in
Figure 10. Combining Best𝑐1 with FineSTARTS has the best speedup,
from 8.8x to 6.4x, and is the fastest on average for all combinations in
Figure 10. On average, Best𝑐1 plus RTS is 1.2x (max 3.5x) faster than
the fastest RTS tool alone. Across the 51 projects, FineMOP plus RTS
outperforms the RTS-only counterpart in 31 projects. Compared
with STARTS alone, combining Best𝑐1 with STARTS saves 2.5 hours
across all projects, Best𝑐1 plus FineSTARTS saves 2.5 hours, Best

𝑐
1

plus Ekstazi saves 2.9 hours, and Best𝑐1 plus FineEkstazi saves 1.5
hours. These speedups come at little additional cost due to RTS’
analysis, which account for 1.2% of the end-to-end time of Best𝑐1
plus RTS runtime and 1.5% of Best𝑐ℓ3 plus RTS end-to-end time.

Combining FineMOP with RTS yields, on average, 32.2% fewer
events, 32.7% fewer monitors, and 29.3% fewer instrumented loca-
tions, compared with RTS alone. Also, FineMOP plus RTS yields
22.6% fewer events, 26.0% fewer monitors, and 14.6% fewer in-
strumented locations compared with FineMOP alone. On average,
FineMOP alone yields 12.4%, 9.1%, and 17.2% fewer events, monitors,
and instrumented locations, respectively, than RTS alone. We find
that combining FineMOP with RTS benefits less from RTS selecting
fewer tests and more from FineMOP re-monitoring fewer specs.

One concern is that, by combining FineMOP and RTS, their
potential for unsafety might be compounded. We see no such
compounding in our experiments: the unsafe cases from FineMOP
plus RTS are the same as those in Table 4 after inspection.

5 Discussion

Why someprojects see no speedups.Themain reason is frequent
third-party library updates. By default, 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 re-monitor all

specs in all classes when a library changes, because reasoning about
the impact of such changes is prohibitive [72, 112]. FineMOP inher-
its this limitation. In projects P10, P60, and P65, roughly 35%, 75%,
and 50% of revisions, respectively, update a library. So, FineMOP’s
best-performing analyses in these projects are slower than 𝑝𝑠𝑐1 and
𝑝𝑠𝑐ℓ3 . But, FineMOP’s speedups across many revisions in all but one
project outweigh costs of library changes in few revisions. Another
reason some projects see minimal speedup, especially when apply-
ing FineMOP to 𝑝𝑠𝑐ℓ3 , is that RV is already very fast for them. So,
FineMOP’s extra analysis costs do not pay off.
Limitations and future work. Some FineMOP variants use
method-level static analysis, which can be unsound if the depen-
dency graph is incomplete. But, we find that for 66 (of 68) projects
and 1,102 revisions, FineMOP’s method-level analyses find all new
violations found by class-level 𝑝𝑠𝑐1 and 𝑝𝑠

𝑐ℓ
3 . FineMOP’s static anal-

ysis can be unsound in the presence of dynamic features like re-
flection [65]. Other static analyses (including eMOP [73, 112] and

10

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

STARTS [69, 72]) have this limitation too, and future work can learn
from techniques for making them “soundier” [79] in the presence
of such dynamic features [10, 14, 74–77, 99, 102, 107].

We evaluate FineMOP on monitoring- and instrumentation-
dominated projects. But, for instrumentation-dominated projects,
FineMOP alone may not offer as much speedup as iMOP, the
SoTA instrumentation-driven evolution-aware RV technique [39].
More research and development is needed to combine iMOP and
FineMOP. To see why, consider a hypothetical example with two
specs: SpecA and SpecB. iMOP must instrument SpecA and SpecB
into the entire codebase in the first revision. If in a second revision
FineMOP finds only SpecA to be affected by changes, there is no
way to (safely) undo all the instrumentation of SpecB that iMOP
did in the first revision. So, if FineMOP is combined with iMOP
today, FineMOP will still re-monitor SpecA and SpecB.

FineMOP is designed to reduce RV overhead only during testing,
before deployment. FineMOP aims to find all new violations, not
all violations, so it is not suitable for use in deployment, where RV
aims to find all violations. Also, this paper is on overhead reduction
only; it is not concerned with other challenges of using RV, like
imprecise specs, debugging violations, or inferring specs.

Lastly, in our safety evaluation, we manually inspect hundreds of
new violations that were seemingly missed. But, outside research,
RV users will not need to do as much manual inspection since
they will likely not be comparing analyses as we do. Better tools
and techniques for reducing manual inspection are needed, but
this is research on its own [70], beyond our paper’s scope. We
perform manual inspection mainly due to (i) test nondeterminism
and (ii) bugs in eMOP’s VMS, which we use to evaluate safety. If
a violation occurs non-deterministically when running the same
technique on the same program and tests always pass, there is no
automated technique to find the root cause. So, we use manual
inspection. As eMOP improves, the need to manually inspect some
of its outputs will also naturally reduce.
Threats to validity. FineMOP’s results may not generalize beyond
the 68 projects and their 1,104 GitHub revisions that we evaluate.
To mitigate this threat, we use many projects and revisions from
prior evolution-aware RV work and a recent RV study. Due to bugs
and limitations in VMS, we manually inspect some violations. This
manual process may lead to misclassifications, a threat that we
mitigate by having a co-author review all inspection results. The
scripts and Maven plugin that we use may also contain bugs. To
reduce this threat, the scripts and plugin are reviewed by multiple
authors for validation. We also build experimental infrastructure
on top of more mature tools such as STARTS and eMOP, and our
artifact is publicly available on GitHub for external validation.

6 Related Work

RV during software testing. It is well-known in the RV com-
munity that RV can be used to find bugs during testing. For
example, in very early work, Artho et al. [5, 6] combined au-
tomated test generation with RV. But, with the emergence of
CI [26, 31, 47, 48, 84, 103, 113], and its rapid code-change cycles,
more recent work started to investigate how to make RV practical
for use during modern regression testing in CI. Such works include
those showing that RV’s runtime overhead during testing in CI

is likely still too high [38, 53, 68, 70]. To speed up RV in CI set-
tings, Legunsen et al. [71, 73, 112] proposed evolution-aware RV,
and techniques that use coarse-grained class-level analysis to re-
monitor only specs related to code affected by changes. We discuss
and compare with class-level evolution-aware RV throughout this
paper. But, FineMOP is the first to leverage fine-grained reasoning,
including about the semantics of changes, to further reduce the
overhead of evolution-aware RV. Recent work took an orthogonal,
complementary approach to reduce instrumentation costs during
evolution [39]. FineMOP speeds up monitoring portions of RV over-
head, which are beyond the scope of an instrumentation-driven
approach. Beyond overhead reduction, some prior work explored
using machine learning to classify spec violations as true bugs or
false alarms (due to bugs in the specs or RV) [85]. Future work can
investigate if violations reported by FineMOP are true bugs.
RV research more broadly. Several surveys and tutorials out-
line the tremendous progress made in the RV community over
the last few decades [9, 11, 15, 29, 30]. But, leveraging software
evolution as FineMOP does is a recent research direction. Some
earlier directions include those that make monitoring algorithms
more efficient [18, 21, 23], improve performance of monitor garbage
collection [54, 56, 80], propose new data structures [22, 23, 80, 89],
infer specs manually or automatically [32, 66, 67, 88], and develop
new frameworks and tools [4, 13, 20, 44, 55, 58, 112].
Regression testing. RTS [28, 34, 35, 41, 43, 64, 69, 78, 87, 91,
92, 99, 101, 110, 115–117, 120] speeds up regression testing by re-
running only a subset of tests affected by code changes. RTS in-
spired evolution-aware RV [71]. Prior work [39, 73, 112] showed
that RTS can be used to reduce RV overhead, but RTS by itself does
not provide as much speedup as evolution-aware RV techniques.
Our results (RQ4 and RQ5) support these earlier findings about
RTS vs. evolution-aware RV and show that FineMOP and RTS are
complementary. FineMOP is inspired by recent RTS approaches
[78, 115, 117] that use finer-grained analyses to speed up RTS, but
those techniques are not concerned with RV. Future work can ex-
plore combining FineMOP with other regression testing techniques
such as test-suite reduction [1, 12, 42, 57, 63, 81, 90, 97, 98, 100, 111,
118, 119] and test-case prioritization [8, 24, 25, 59, 93, 114].

7 Conclusions

FineMOP speeds up RV by using fine-grained analyses to re-monitor
fewer unaffected specs as code evolves. Prior evolution-aware RV
techniques used coarse-grained, class-level analysis to find a sub-
set of affected specs to re-monitor after code changes. But, these
techniques are imprecise and often re-monitor unaffected specs for
which there can be no new violation after code changes. FineMOP’s
more precise analysis considers fewer classes as impacted and re-
monitors fewer specs compared to the SoTA. FineMOP outperforms
class-level evolution-aware RV (eMOP) and JavaMOP on 1,104 revi-
sions of 68 projects, and finds 99.68% of all new violations found by
eMOP. Future work is needed to address this small safety loss.

Acknowledgments

We thank Saikat Dutta, Shinhae Kim, Elaine Yao, and the anony-
mous reviewers for their help, comments, and feedback. This work
is partially supported by an Intel Rising Star Faculty Award, a
Google Cyber NYC Institutional Research Award, and the US NSF

11

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Pengyue Jiang, Kevin Guan, Mahdi Khosravi, Moustafa Ismail, Marcelo d’Amorim, and Owolabi Legunsen

under Grant Nos. CCF-2045596, CCF-2319473, CCF-2403035, CCF-
2525243, CCF-2319472, and CCF-2349961.

References

[1] Marwah Alian, Dima Suleiman, and Adnan Shaout. 2016. Test case reduction
techniques-survey. Int. J. of Adv. Comp. Sci. and App. 7, 5.

[2] Dale Anson and Andre Kaplan. 2025. jEdit JDiff Plugin. http://plugins.jedit.
org/plugins/?JDiffPlugin.

[3] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2004. A
Differencing Algorithm for Object-Oriented Programs. In ASE.

[4] Matthew Arnold, Martin Vechev, and Eran Yahav. 2008. QVM: An Efficient
Runtime for Detecting Defects in Deployed Systems. In OOPSLA.

[5] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz
Khurshid, Mike Lowry, Corina Pasareanu, Grigore Roşu, Koushik Sen, Willem
Visser, et al. 2005. Combining test case generation and runtime verification.
TCS 336, 2-3.

[6] Cyrille Artho, Doron Drusinksy, Allen Goldberg, Klaus Havelund, Mike Lowry,
Corina Pasareanu, Grigore Roşu, and Willem Visser. 2003. Experiments with
test case generation and runtime analysis. In Abstract State Machines.

[7] ASM Team 2025. ASM. http://asm.ow2.org/.
[8] Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel Briand. 2021. Reinforcement

learning for test case prioritization. TSE 48, 8.
[9] Howard Barringer, Klaus Havelund, David Rydeheard, and Alex Groce. 2009.

Rule systems for runtime verification: A short tutorial. In RV.
[10] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo

d’Amorim, and Michael D. Ernst. 2015. Static Analysis of Implicit Control Flow:
Resolving Java Reflection and Android Intents. In ASE.

[11] Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Falcone. 2014. First International
Competition on Software for Runtime Verification. In RV.

[12] Jennifer Black, Emanuel Melachrinoudis, and David Kaeli. 2004. Bi-Criteria
Models for All-Uses Test Suite Reduction. In ICSE.

[13] Eric Bodden. 2011. MOPBox: A Library Approach to Runtime Verification. In
RV Demo.

[14] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders. In ICSE.

[15] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. 2017. A
survey of runtime monitoring instrumentation techniques. arXiv preprint
arXiv:1708.07229.

[16] Feng Chen, Marcelo d’Amorim, and Grigore Roşu. 2004. A Formal Monitoring-
Based Framework for Software Development and Analysis. In ICFEM.

[17] Feng Chen,Marcelo d’Amorim, and Grigore Roşu. 2006. Checking and correcting
behaviors of Java programs at runtime with Java-MOP. In RV.

[18] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Roşu. 2009.
Efficient formalism-independent monitoring of parametric properties. In ASE.

[19] Feng Chen and Grigore Roşu. 2007. MOP: An efficient and generic runtime
verification framework. In OOPSLA.

[20] Feng Chen andGrigore Roşu. 2003. TowardsMonitoring-Oriented Programming:
A paradigm combining specification and implementation. In RV.

[21] Feng Chen and Grigore Roşu. 2008. Parametric trace slicing and monitoring.
Technical Report UIUCDCS-R-2008-2977. Computer Science Dept., UIUC.

[22] Christian Colombo and Yliès Falcone. 2016. Organising LTL monitors over
distributed systems with a global clock. FMSD 49, 1.

[23] Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz, and Daniel
Thoma. 2016. Runtime Monitoring with Union-Find Structures. In TACAS.

[24] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2000. Prioritizing
Test Cases for Regression Testing. In ISSTA.

[25] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey Malishevsky.
2004. Selecting a Cost-Effective Test Case Prioritization Technique. SQJ 12, 3.

[26] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Envi-
ronments. In FSE.

[27] eMOP Team. 2025. eMOP. https://github.com/SoftEngResearch/emop.
[28] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations

of regression test selection techniques: A systematic review. In ESEM.
[29] Yliès Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime

Verification. In Engineering Dependable Software Systems.
[30] Yliès Falcone, Srđan Krstić, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy

for Classifying Runtime Verification Tools. In RV.
[31] Martin Fowler. 2006. Continuous Integration. http://www.dccia.ua.es/dccia/inf/

asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
[32] Mark Gabel and Zhendong Su. 2012. Testing Mined Specifications. In FSE.
[33] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight

Test Selection. In ICSE Demo.
[34] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression

test selection with dynamic file dependencies. In ISSTA.

[35] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
empirical evaluation and comparison of manual and automated test selection.
In ASE.

[36] Kevin Guan. 2025. eMOP safety issue. https://github.com/SoftEngResearch/
emop/issues/97.

[37] Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen. 2025. Faster explicit-
trace monitoring-oriented programming for runtime verification of software
tests. In OOPSLA.

[38] Kevin Guan and Owolabi Legunsen. 2024. An In-depth Study of Runtime
Verification Overheads during Software Testing. In ISSTA.

[39] Kevin Guan and Owolabi Legunsen. 2025. Instrumentation-Driven Evolution-
Aware Runtime Verification. In ICSE.

[40] Kevin Guan andOwolabi Legunsen. 2025. TraceMOP: An Explicit-Trace Runtime
Verification Tool for Java. In FSE Demo.

[41] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluat-
ing regression test selection opportunities in a very large open-source ecosystem.
In ISSRE.

[42] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-
Demand Test Suite Reduction. In ICSE.

[43] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi.
2001. Regression Test Selection for Java Software. In OOPSLA.

[44] Klaus Havelund and Grigore Roşu. 2001. Monitoring Java Programs with Java
PathExplorer. In RV.

[45] Klaus Havelund and Grigore Roşu. 2001. Monitoring Programs Using Rewriting.
In ASE.

[46] Klaus Havelund and Grigore Roşu. 2002. Synthesizing Monitors for Safety
Properties. In TACAS.

[47] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in Continuous Integration: Assurance, Security, and
Flexibility. In FSE.

[48] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In ASE.

[49] Runtime Verification Inc. 2025. JavaMOP. https://github.com/
runtimeverification/javamop.

[50] Runtime Verification Inc. 2025. RV-Monitor. https://github.com/
runtimeverification/rv-monitor.

[51] JavaMOP Regression Commit 2025. Performance regression that we find in Java-
MOP. https://github.com/runtimeverification/rv-monitor/commit/884f9622f.

[52] JavaParser Team 2025. JavaParser - Home. https://javaparser.org.
[53] Omar Javed and Walter Binder. 2018. Large-Scale Evaluation of the Efficiency

of Runtime-Verification Tools in the Wild. In APSEC.
[54] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Roşu. 2011.

Garbage Collection for Monitoring Parametric Properties. In PLDI.
[55] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu.

2012. JavaMOP: Efficient Parametric Runtime Monitoring Framework. In ICSE
Demo.

[56] Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu. 2012. Scalable Para-
metric Runtime Monitoring. Technical Report. Computer Science Dept., UIUC.

[57] James A. Jones and Mary Jean Harrold. 2001. Test-Suite Reduction and Prioriti-
zation for Modified Condition/Decision Coverage, In ICSM. TSE 29, 3.

[58] Murat Karaorman and Jay Freeman. 2004. jMonitor: Java runtime event specifi-
cation and monitoring library. In RV.

[59] Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization
technique for regression testing in resource constrained environments. In ICSE.

[60] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath Kannan,
Insup Lee, and Oleg Sokolsky. 1999. Formally specified monitoring of temporal
properties. In ECRTS.

[61] Shinhae Kim, Saikat Dutta, and Owolabi Legunsen. 2025. Faster Runtime Verifi-
cation during Testing via Feedback-Guided Selective Monitoring. In ASE.

[62] Shinhae Kim, Saikat Dutta, and Owolabi Legunsen. 2026. Valg: A Fast Rein-
forcement Learning-Based Runtime Verification Tool for Java. In ICSE Demo.

[63] Bogdan Korel, Luay Ho Tahat, and Boris Vaysburg. 2002. Model based regression
test reduction using dependence analysis. In ICSM.

[64] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. 1994. Change
impact identification in object oriented software maintenance. In ICSM.

[65] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges
for Static Analysis of Java Reflection: Literature Review and Empirical Study. In
ICSE.

[66] Choonghwan Lee, Feng Chen, and Grigore Roşu. 2011. Mining Parametric
Specifications. In ICSE.

[67] Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu.
2012. Towards Categorizing and Formalizing the JDK API. Technical Report.
Computer Science Dept., UIUC.

[68] Owolabi Legunsen, Nader Al Awar, Xinyue Xu, Wajih Ul Hassan, Grigore Roşu,
and Darko Marinov. 2019. How Effective are Existing Java API Specifications
for Finding Bugs During Runtime Verification? ASE Journal 26, 4.

12

http://plugins.jedit.org/plugins/?JDiffPlugin
http://plugins.jedit.org/plugins/?JDiffPlugin
http://asm.ow2.org/
https://github.com/SoftEngResearch/emop
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
https://github.com/SoftEngResearch/emop/issues/97
https://github.com/SoftEngResearch/emop/issues/97
https://github.com/runtimeverification/javamop
https://github.com/runtimeverification/javamop
https://github.com/runtimeverification/rv-monitor
https://github.com/runtimeverification/rv-monitor
https://github.com/runtimeverification/rv-monitor/commit/884f9622f
https://javaparser.org

Fine-Grained Analyses for Evolution-Aware Runtime Verification ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

[69] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE.

[70] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko
Marinov. 2016. How good are the specs? A study of the bug-finding effectiveness
of existing Java API specifications. In ASE.

[71] Owolabi Legunsen, Darko Marinov, and Grigore Roşu. 2015. Evolution-aware
monitoring-oriented programming. In ICSE NIER.

[72] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In ASE Demo.

[73] Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic, Grigore Roşu, and Darko
Marinov. 2019. Techniques for Evolution-Aware Runtime Verification. In ICST.

[74] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming reflection to support whole-program analysis of Android apps. In ISSTA.

[75] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016.
Reflection-aware static analysis of Android apps. In ASE.

[76] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing reflection
resolution for Java. In ECOOP.

[77] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective soundness-guided reflection
analysis. In SAS.

[78] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023.
More precise regression test selection via reasoning about semantics-modifying
changes. In ISSTA.

[79] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták,
José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khed-
ker, Anders Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness:
A manifesto. Commun. ACM 58, 2.

[80] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Şerbănuţă, and Grigore Roşu. 2014. RV-Monitor: Efficient
Parametric Runtime Verification with Simultaneous Properties. In RV.

[81] Scott McMaster and Atif Memon. 2007. Fault Detection Probability Analysis for
Coverage-Based Test Suite Reduction. In ICSM.

[82] Patrick Meredith and Grigore Roşu. 2013. Efficient Parametric Runtime Verifi-
cation with Deterministic String Rewriting. In ASE.

[83] Patrick O’Neil Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. 2008.
Efficient Monitoring of Parametric Context-Free Patterns. In ASE.

[84] Mathias Meyer. 2014. Continuous Integration and Its Tools. IEEE Software 31, 3.
[85] Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. 2020.

Prioritizing Runtime Verification Violations. In ICST.
[86] Eugene W. Myers. 1986. An O(ND) difference algorithm and its variations.

Algorithmica 1, 1.
[87] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression

testing to large software systems. In FSE.
[88] Michael Pradel and Thomas R Gross. 2009. Automatic Generation of Object

Usage Specifications from Large Method Traces. In ASE.
[89] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2013. Optimizing

Monitoring of Finite State Properties Through Monitor Compaction. In ISSTA.
[90] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case reduction for C compiler bugs. In PLDI.
[91] Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for

regression test selection. In ICSM.
[92] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. TOSEM 6, 2.
[93] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

1999. Test Case Prioritization: An Empirical Study. In ICSM.
[94] Runtime Verification Inc. 2025. STHM spec from JavaMOP. https:

//github.com/SoftEngResearch/tracemop/blob/master/scripts/props/

StringTokenizer_HasMoreElements.mop.
[95] Fred B. Schneider. 2000. Enforceable Security Policies. TISSEC 3, 1.
[96] Koushik Sen and Grigore Roşu. 2003. Generating optimal monitors for extended

regular expressions. In RV.
[97] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.

2014. Balancing trade-offs in test-suite reduction. In FSE.
[98] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.

2018. Evaluating Test-suite Reduction in Real Software Evolution. In ISSTA.
[99] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and

Owolabi Legunsen. 2019. Reflection-Aware Static Regression Test Selection. In
OOPSLA.

[100] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing
and combining test-suite reduction and regression test selection. In FSE.

[101] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In ISSRE.

[102] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More Sound Static Handling of Java Reflection. In APLAS.

[103] Sean Stolberg. 2009. Enabling Agile Testing through Continuous Integration. In
Agile Conference.

[104] William N. Sumner and Xiangyu Zhang. 2013. Comparative Causality: Explain-
ing the Differences Between Executions. In ICSE.

[105] STARTS Team. 2025. STARTS—A tool for STAtic Regression Test Selection.
https://github.com/TestingResearchIllinois/starts.

[106] TraceMOP Team. 2024. TraceMOP: A Trace-Aware Runtime Verification Tool
for Java. https://github.com/SoftEngResearch/tracemop.

[107] Andreas Thies and Eric Bodden. 2012. RefaFlex: Safer refactorings for reflective
Java programs. In ISSTA.

[108] KD tuition. 2025. mockito is not working #61. https://github.com/gliga/ekstazi/
issues/61.

[109] Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and
Milos Gligoric. 2018. Towards refactoring-aware regression test selection. In
ICSE.

[110] David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection
Technique for Database Driven Applications. In ICSM.

[111] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. STVR 22, 2.

[112] Ayaka Yorihiro, Pengyue Jiang, Valeria Marques, Benjamin Carleton, and
Owolabi Legunsen. 2023. eMOP: A Maven Plugin for Evolution-Aware Runtime
Verification. In RV.

[113] Nathan York. 2011. Tools for Continuous Integration at Google Scale. https:
//www.youtube.com/watch?v=b52aXZ2yi08.

[114] Ke Zhai, Bo Jiang, and W. K. Chan. 2014. Prioritizing Test Cases for Regression
Testing of Location-Based Services: Metrics, Techniques, and Case Study. TSC
7, 1.

[115] Guofeng Zhang, Luyao Liu, Zhenbang Chen, and Ji Wang. 2024. Hybrid Regres-
sion Test Selection by Integrating File and Method Dependences. In ASE.

[116] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.
Comparing and Combining Analysis-based and Learning-based Regression Test
Selection. In AST.

[117] Lingming Zhang. 2018. Hybrid Regression Test Selection. In ICSE.
[118] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An

Empirical Study of JUnit Test-Suite Reduction. In ISSRE.
[119] Hao Zhong, Lu Zhang, and Hong Mei. 2008. An Experimental Study of Four

Typical Test Suite Reduction Techniques. IST 50, 6.
[120] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A

framework for checking regression test selection tools. In ICSE.

13

https://github.com/SoftEngResearch/tracemop/blob/master/scripts/props/StringTokenizer_HasMoreElements.mop
https://github.com/SoftEngResearch/tracemop/blob/master/scripts/props/StringTokenizer_HasMoreElements.mop
https://github.com/SoftEngResearch/tracemop/blob/master/scripts/props/StringTokenizer_HasMoreElements.mop
https://github.com/TestingResearchIllinois/starts
https://github.com/SoftEngResearch/tracemop
https://github.com/gliga/ekstazi/issues/61
https://github.com/gliga/ekstazi/issues/61
https://www.youtube.com/watch?v=b52aXZ2yi08
https://www.youtube.com/watch?v=b52aXZ2yi08

	Abstract
	1 Introduction
	2 Background and Running Example
	3 FineMOP
	3.1 Design Considerations
	3.2 Overview
	3.3 A generic evolution-aware RV algorithm
	3.4 Instantiating the generic algo in FineMOP
	3.5 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Overheads
	4.3 RQ2: Precision
	4.4 RQ3: Safety
	4.5 RQ4: Comparing with RTS
	4.6 RQ5: Combining with RTS

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

