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Abstract

Partial code execution is the problem of executing code with miss-

ing de�nitions. The problem has gained recent traction as solutions

to the problem could enable various downstream analyses. We pro-

pose feedback-directed partial execution, a technique supported

by a tool, named Incompleter, that uses the error feedback from

executions to enable partial code execution. Incompleter builds

on the observation that errors observed during the execution of in-

complete snippets often follow similar error patterns. Incompleter

takes an incomplete snippet as input and applies rules (e.g., add

class, add �eld, add �le, etc.) to resolve the successive dynamic

errors it encounters during execution of the snippet. Incompleter

stops when the snippet successfully executes or when it reaches

certain bounds. Our results indicate that Incompleter outperforms

LExecutor, the state-of-the-art in partial execution. For example,

considering a dataset of 4.7K incomplete StackOver�ow snippets,

Incompleter enables the execution of 10% more code snippets

compared to LExecutor and covers 23% more statements. We also

show that Incompleter’s type inference signi�cantly improves

over LExecutor’s type inference, with a 37% higher F1 score.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Partial (code) execution [23, 32, 33, 58, 70] is the problem of exe-

cuting a code fragment with missing elements, such as variable

and function de�nitions. It empowers dynamic analyses as devel-

opers could start the analysis from arbitrary program locations; it

enables debugging in isolation for similar reason, and it facilitates
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the adoption of code snippets from Q&A forums as prior work has

shown that ≈75% of code snippets from those forums cannot be

directly executed [26, 27]. Souza and Pradel [58] recently proposed

LExecutor, a technique for partial execution that uses neural type

prediction [23, 43, 48] to determine the types of unknown identi�ers

and de�ne them based on those types. LExecutor uses hard-coded

values for identi�ers whose types it can infer and it uses dummy

objects for identi�ers whose types it fails to infer. Despite the big

step forward that LExecutor made in partial execution, there still

remains much room for improvement. For example, LExecutor can

successfully execute only 54% of the code snippets from its dataset.

Two fundamental reasons explain those results: the in�exibility

of dummy objects (e.g., to de�ne a required method or attribute)

and the inability to modify the environment where the snippet

runs (e.g., to add a required �le or a module).

We propose feedback-directed partial execution, a technique sup-

ported by a tool, named Incompleter, leveraging execution feedback

to address the problems mentioned above. Execution feedback en-

ables Incompleter to obtain data that an incomplete code snippet

(i.e., a snippet with missing de�nitions) needs for running. Incom-

pleter builds on the observation that errors observed during the

execution of incomplete snippets often follow a similar pattern.

For example, considering the errors manifested when running the

snippets from the LExecutor dataset, we observe that 50% of those

are NameError (e.g., due to an unde�ned variable) and 40% of those

are ModuleNotFoundError (e.g., due to a missing module). That ob-

servation led us to manually craft a set of rules to address those

issues (e.g., add a class, add a �eld to a class, add an import, remove

import, etc.). Incompleter takes an incomplete snippet as input and

iteratively applies rules to resolve the successive dynamic errors

it encounters during execution of the given snippet. Incompleter

stops when it �nds a solution (i.e., the snippet runs successfully) or

when it cannot make progress or when it reaches a budget on the

number of iterations.

Incompleter has two components: themocker and the unmocker.

The goal of the mocker is to enable the execution of the input snip-

pet whereas the goal of the unmocker is to make the executable

mocked code more faithful to the original code. The mocker com-

ponent follows the feedback-directed approach described above

to mock the behavior of the missing elements of the input. In the

process, it creates arti�cial “mocked” types to circumvent some of

the errors. Subsequently, the unmocker replaces –or recommends

the replacement of– the mocked types with concrete types. The

unmocker’s type inference uses type deduction and type prediction

in tandem. Type deduction relies on a list of type deduction rules to

infer user-de�ned types and certain built-in types. Type deduction,

albeit precise, is fundamentally incomplete. For that, Incompleter

uses a CodeT5-based [66] neural type predictor [23, 43, 48] to com-

plement type deduction and cover a broader range of types.
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1 def �nd_nearest(array, values):

2 array = np.asarray(array)

3 values = np.expand_dims(values,axis=−1)

4 indices = np.abs(array−values).argmin(axis=−1)

5 return array[indices]

6 image = plt.imread('example_3_band_image.jpg')

7 print(image.shape)

8 quantiles = np.linspace(0, 255, num=2∗∗2, dtype=np.uint8)

9 quantiled_image = �nd_nearest(quantiles, image)

10 print(quantiled_image.shape)

Figure 1: Snippet 653 from the LExecutor dataset with iden-

ti�ers plt and np unde�ned and a reference to a non-existing

�le example_3_band_image.jpg.

Results show that Incompleter obtains higher executability

and coverage compared to LExecutor. For example, considering a

dataset of 4.7K incomplete StackOver�ow snippets, Incompleter

enables the execution of 10% more code snippets compared to LEx-

ecutor and covers 23% more statements. We also show that In-

completer’s type inference signi�cantly improves over LExecu-

tor’s type inference, with a 37% higher F1 score. Aiming to further

demonstrate the usefulness and soundness of our approach, we also

conduct a case study on a highly-popular open-source project to

download videos from YouTube, YouTube-dl [18], and show that

Incompleter faithfully reproduces 8 of the 15 YouTube-dl bugs

from the BugsInPy [57] dataset of reproducible Python bugs.

This paper makes the following contributions:

Technique. A technique that leverages execution feedback to pro-

gressively complete a code snippet with missing de�nitions. Our

technique is rule-based and therefore is complementary to alterna-

tive approaches, such as LExecutor. We implement the technique

in the publicly-available tool Incompleter [6].

Evaluation. A study involving a large dataset of code snippets

from StackOver�ow, showing that Incompleter outperforms the

SoTA, LExecutor, on executability and coverage. We also demon-

strate Incompleter’s usefulness through a case study.

2 Example

We illustrate Incompleter on two representative examples.

Terminology. An incomplete snippet is a syntactically correct frag-

ment of Python code whose execution raises exceptions because of

missing de�nitions, some of which can be external to the code (e.g.,

�les, directories, and modules). Figure 1 shows an example of an

incomplete snippet from the LExecutor dataset [58]. The snippet

has the identi�er plt unde�ned and a reference to a non-existing

�le example_3_band_image.jpg (Line 6). Execution of this snippet

raises a NameError exception at Line 6 because plt is unde�ned. A

complete snippet is the counterpart of an incomplete snippet with

missing de�nitions resolved. The execution of a complete snippet

must terminate without raising exceptions (for correctness ) and

must exercise the same statements that the execution of the corre-

sponding incomplete snippet exercises up to the point it raises an

exception (for consistency).

2.1 Example 1: Adding Missing Imports and File

Incompleter repeats the following steps until all errors are re-

solved or it reaches a time budget: (1) execute snippet, (2) collect

error, and (3) choose an action based on previous error. We use the

example from Figure 1 to illustrate this process. The �gure shows

the snippet 653 from the LExecutor dataset [5]. The execution

of this snippet produces a NameError indicating that identi�er plt

is unde�ned. Incompleter �nds the relationship between the li-

brary matplotlib and the identi�er plt and prepends the import

statement import matplotlib.pyplot as plt to the snippet to re-

solve the error. Then, Incompleter executes the revised snippet

observing the error FileNotFoundError at line 6 because the �le

example_3_band_image.jpg does not exist in the environment from

where the snippet executes. In response to the error, Incompleter

extracts the �le name and extension from the error message and

adds a �le with the same name to the environment where the snip-

pet executes. The content of the �le corresponds to the expected

extension (in this case, jpg) and may be relevant. In this example,

it is relevant as the function imread expects an image �le to return

a corresponding array of bytes. To create content, Incompleter

maintains example �les for common �le extensions. It is worth

noting that �le is an example of a missing de�nition that is external

to the code. Other examples include missing directory and module

(Section 3.1.2). After resolving the missing �le error, Incompleter

executes the code again encountering another NameError indicating

that the identi�er np is unde�ned. Once again, Incompleter re-

solves the issue by prepending the import statement import numpy

as np. After that change, the snippet runs successfully, printing

(700, 1050, 3) and (700, 1050, 3).

LExecutor fails to execute the example from Figure 1 as it does

not add import statements and does not create missing resources.

LExecutor uses the type DummyObject for types of unde�ned iden-

ti�ers that it is unable to infer. The DummyObject type contains only

one de�nition–the generic constructor def __init__(self, *args,

**kwargs): pass, which admits any sequence of parameters. In this

example, LExecutor infers the type DummyObject for the unde�ned

identi�ers plt, np, and for the return values of the functions asarray,

expand_dims, and abs. In lines 2 and 3, the DummyObject values re-

turned from the call to asarray and expand_dims are assigned to

the identi�ers array and values, respectively. When evaluating the

expression array-values in line 4, the runtime reports a TypeError

related to the unsupported arithmetic subtraction between two

objects of type DummyObject. To sum up, LExecutor prematurely

decides to mock the types of unde�ned identi�ers in this example.

As we showed before with Incompleter, that was not the right

direction to resolve the issue.

2.2 Example 2: Mocking and Unmocking

This example illustrates a case where Incompleter needs to in-

fer types to resolve an issue. For simplicity, we use snippet 251,

consisting of the single statement number += 1, from the LExecu-

tor dataset [1]. The code contains a use of the unde�ned variable

number; hence, execution raises NameError.

Incompleter has two main components: the mocker and the

unmocker. The goal of the �rst component is to execute the code;

it does that by adding code-related artifacts. The previous example

illustrates the mocker, which introduces two import statements and

a �le. In this example, the mocker will introduce a mocked type. In

contrast, the goal of the unmocker is to identify the actual types of

mocked types. In this case, that enables Incompleter to initialize
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the variable. It is worth noting that, in addition to executability,

type inference also improves readability of the snippets.

For the snippet number += 1, Incompleter lazily de�nes number as

a TBD0 object, i.e., Incompleter introduces the assignment number

= TBD0(). At this point, the de�nition of TBD0 is equivalent to that

of LExecutor’s DummyObject, i.e., the mocked type only declares a

generic constructor. The key di�erence between these types is that

TBD types can be re�ned, hence the need to di�erentiate TBD types

with a counter (e.g., TBD0). The execution of the revised version of

the original snippet now raises TypeError as a result of an attempt

to add the numeric literal 1 to an instance of the non-numeric

type TBD0, which the variable number refers to. In response to this

error, Incompletermakes two modi�cations to the TBD0 class: (1) it

adds the built-in function __iadd__ and (2) it modi�es the class

to inherit from the built-in type int. Although the code executes

successfully after those changes, TBD classes remain in the code

and might be inconvenient to developers (e.g., for debugging). At

that stage, the unmocker component of Incompleter kicks in to

deduce that TBD0 denotes the set of integers. As a consequence,

the unmocker removes the de�nition TBD0 and replaces the initial

assignment to the variable number with a numeric value. For that,

it assigns the value 1, arbitrarily chosen. (Section 7 elaborates on

how test data generation techniques, as symbolic execution, could

guide the choice of primitive values.) Finally, Incompleter reports

the following snippet on output:

number = 1

number += 1

LExecutor is unable to handle this example because the code

instrumentation it uses does not support addition assignment +=.

We manually refactored the code to successfully circumvent that

engineering limitation, but, then LExecutor raises TypeError (on

number = number + 1) as it predicts number to be an instance of

DummyObject. Recall that DummyObject has the same de�nitions ir-

respective of the input. In particular, it is not a subclass of any

numeric type, so it does not overload the operator +.

It is worth noting that this section uses short examples to demon-

strate the principle of mocking and unmocking, but the idea gener-

alizes to several other cases. For example, Incompleter can execute

code with missing classes and functions. Section 3.1.2 elaborates

a list of transformations that Incompleter supports to make the

code executable and Section 3.2 elaborates on the method we use

to identify the actual types that the mocked types represent.

3 Incompleter

We describe Incompleter, a technique to enable the execution of

incomplete Python code snippets by leveraging execution feedback.

Incompleter takes as input an incomplete code snippet free of

syntactical errors and produces a corresponding complete snippet.

Incompleter is organized as a pipeline of two main processor

components: the mocker and the unmocker. The goal of the mocker

is to make the code executable whereas the goal of the unmocker

is to make the executable code more faithful to the original code

by predicting the concrete types that represent the mocked types.

Figure 2 shows Incompleter’s organization, which we detail in the

following sections.

Algorithm 1:Mocker algorithm

1 Input original code snippet s and environment env

2 Output mocked code snippet and modi�ed environment

3 Require: s is free from syntax errors

4

5 def execute(s, env): ... # executes snippet s inside environment env

6 def parse(err): ... # parses error string err

7 def �nd_action(err_type, err_msg): ... # maps error data to an action

8

9 iter← 0

10 while iter++ < MAX_ITER do
11 err_str← execute(s, env)

12 if len(err_str) == 0 then
13 break # no error

14 end

15 err_type, err_msg, err_line← parse(err_str)

16 err_id← err_type + err_msg + err_line

17 if err_id == prev_err_id then
18 break # reached a �xpoint; no progress

19 end

20 prev_err_id← err_id

21 action← �nd_action(err_type, err_msg)

22 if action is None then
23 break # no action for this error

24 end

25 s, env← action.apply(s, env)

26 end

27 return s, env

3.1 Mocker

Algorithm 1 shows the pseudocode of the mocker component of

Incompleter. It takes as input an incomplete snippet and produces

a corresponding code snippet that executes with no errors. The

algorithm is organized as an iterative procedure that progressively

resolves dynamic errors and stops when it reaches a �xpoint or a

budget (number of iterations).

Incompleter contains a set of rules for mapping error messages

to actions that can resolve those errors. Typically, actions are code

transformations but they can also change the environment where

the code is being executed, e.g., adding a �le or installing a new

package. At each iteration, Algorithm 1 proceeds as follows. Incom-

pleter executes the code snippet s within a virtual environment

env. If no error occurs, execution terminates. Otherwise, the mocker

checks if the error is the same as observed in the previous iteration.

If that is the case, execution terminates as that condition indicates

the previous changes were ine�ective in resolving the error. It is

worth noting that the preconditions for applying di�erent actions

are typically disjoint. Incompleter does have a simple backtracking

mechanism that tries all actions that satisfy preconditions, reverting

the e�ects of those actions was ine�ective. The pseudocode omits

this feature for space and simplicity. If err_id and prev_err_id are

distinct, execution proceeds to select an appropriate action to re-

solve the current error. The auxiliary function find_action looks

up the appropriate action. If no such action is found, execution ter-

minates. Otherwise, Incompleter applies the action and proceeds

to the next iteration. In the following, we describe the methodology

we use to obtain rules.

3.1.1 Rule Mining Methodology. We use the LExecutor dataset

to decide which rules to specify. The rationale is that the LExecu-

tor dataset is relatively small –enabling human inspection– yet
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Figure 2: Incompleter organization as a pipeline of two components–the “mocker" and the “unmocker".

Table 1: List of rules with corresponding number of snippets.

The rules are grouped by the error type they resolve.

Error Type Rule # Snippets

NameError Add-Import 43

NameError, AttributeError
De�ne-Func 27
De�ne-Var 126

FileNotFoundError Create-Resource 16

ModuleNotFoundError Resolve-Module 17

TypeError

De�ne-Container 42
De�ne-Callable 4
De�ne-Length 2
De�ne-Operator 16
De�ne-Literal 17

KeyError De�ne-Key 9

ValueError Convert-Literal 2

representative. To choose which rules to specify, we proceed as

follows. Initially, we execute the entire set of incomplete code snip-

pets from the LExecutor dataset. We then group snippets that fail

for a similar reason (e.g., missing variable de�nition). Conceptually,

this step partitions the set of code snippets in groups related by the

cause of error. Then, we select the group with the highest number

of snippets and elaborate an action to resolve the issues from that

group. An action modi�es the code (e.g., adding or removing an

import statement) or the execution environment where the code

executes (e.g., adding a �le). Finally, we apply the action to all eligi-

ble snippets, run the modi�ed snippets, and select another group of

issues to analyze. This process is repeated until we can no longer

formulate a rule to �x two or more snippets. We obtain a set of 12

rules following this process.

Table 1 shows the list of 12 rules that Incompleter uses grouped

by error type, denoting a Python’s built-in exception type [3] that is

raised during the execution of the corresponding group of snippets.

The table shows the number of snippets (column “# Snippets") that

could resolve a certain error (column “Error Type”) by applying the

corresponding rule (column “Rule”). Incompleter’s ruleset can be

expanded with other rules. The following section details each of

the mined rules.

3.1.2 Rule Description. This section describes the 12 rules mined

with the method from Section 3.1.1.

M1. Add-Import. We built a list of the most popular third-

party Python packages [64]. Then we mined from GitHub [2] the

�rst 100 import statement usages related to these popular packages.

We mapped these import statement usages to the module names

of the selected popular packages. The mapping also contains the

names and import statement usages of Python built-in modules [12].

Eventually, in response to a NameError, we add the corresponding

import statement in the code if the unde�ned identi�er is a module’s

name in our prepared mapping.

M2. De�ne-Func. For a NameError, if we cannot �nd the unde-

�ned identi�er in the mapping from rule M1, we statically analyze

the source code to check whether the unde�ned identi�er is a func-

tion call. If yes, we try to infer the function’s signature and then we

de�ne the function in the code. In the case of an AttributeError,

we similarly try to analyze whether the unde�ned attribute of an

object is a method call. If yes, we de�ne the method in the scope

of the corresponding class as either an instance or a class method,

depending on the information from the error message.

M3. De�ne-Var. For a NameError, if the unde�ned identi�er is

neither the name of a module (rule. M1) nor the name of a function

(rule M2), we lazily assign a value to the identi�er. The value is

initially an object from a generic (to-be-de�ned) TBD class.We refrain

from committing to a value of a speci�c type since for an unde�ned

variable, it is di�cult to know about its type information without

knowing more about its runtime behavior. So, we delay binding

an identi�er to the value of a certain type as long as we don’t

have su�cient information from the error messages about that

identi�er’s expected runtime behavior.

M4. Create-Resource. Mocker creates mock �le and directory

resources within the execution environment (env) in response to

FileNotFoundError and NotADirectoryError. Within a code snippet,

when a certain API reads from a �le, the API may expect a par-

ticular encoding for that �le, commonly determined by the �le’s

extension. So, the mocker extracts the missing �le’s extension and

creates a mock �le from an example �le with the same extension.

Incompleter stores a set of example �les with common extensions

to facilitate mock �le creation. If no example �le with a certain

extension is stored, an example .txt �le is used by default.

M5. Resolve-Module. If a module used within the code snippet,

is missing, we try to install the module using the Python pack-

age manager. After trying to install the module in response to a

ModuleNotFoundError, if the module is still not found, we remove

the corresponding import statement so that the module can be

mocked using the rule M3. Additionally, suppose an attribute of a

module is unde�ned. In that case, we apply rule M2 or M3 to mock

the attribute as a function or as a variable respectively depending

on whether the attribute is used as a function call in the code.

M6. De�ne-Container. After lazily de�ning an unde�ned iden-

ti�er as a generic TBD object in rule M3, the execution might en-

counter follow-up TypeErrors since a TBD class is very generic. Based
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on the error message, if a certain TBD class is expected to be an iter-

able or a subscriptable, we convert that TBD class into a specialized

TBDContainer class which can behave like an iterable or a subscript-

able. The TBDContainer class has an internal dictionary to store

data and the class implements built-in functions like __getitem__,

__setitem__, __iter__, and __next__ to comply with an iterable or

a subscriptable interface.

M7. De�ne-Callable. Another TypeError occurs when a TBD

object is supposed to be callable. In this case, the mocker �rst checks

if that TBD object is an attribute of another class. If yes, the mocker

uses rule M2 to de�ne a function foo within that class, where the

identi�er foo was originally unde�ned and later de�ned as the TBD

object. If foo i.e. the TBD object is not an attribute of another class,

the mocker implements the built-in function __call__ inside the

TBD class to make it callable.

M8. De�ne-Length. If the runtime needs to compute the length

of a certain TBD object, the mocker will implement the built-in

__len__ method within that TBD class.

M9. De�ne-Operator. Some TypeErrors occur when arith-

metic/assignment/comparison/logical/bitwise operations are car-

ried out on objects of incompatible type(s). In the case of a unary op-

erator, if the operand is of TBD type, the mocker implements within

the TBD class, the built-in function corresponding to the unary op-

erator. In the case of a binary operator, if one of the operands is

of TBD type, the mocker similarly implements the built-in function

corresponding to the binary operator, within that TBD class. For

example, __le__(self, other) is the built-in function for the <

operator. Based on the error message, for a binary operator, if the

other operand is str or int type, the mocker makes the TBD class to

inherit from str or int respectively.

M10. De�ne-Literal. Based on the error message, if a certain

TBD object is expected to be a string or an integer, the mocker

subclasses that particular TBD class from the built-in str or int

classes respectively.

M11. De�ne-Key.When a KeyError occurs, the error message

states only the key that is not found with no reference to which

dictionary the key was not found in. To overcome the challenge of

locating the target dictionary, we pre-process all lists and dictio-

naries in the original snippet as objects of the TBDContainer class

(ref. M6). Any item-level access of a TBDContainer object occurs

through its overridden __getitem__ built-in function. In the case of

a KeyError, the mocker checks the stack trace to �nd the exact loca-

tion of the __getitem__ method where the KeyError had occurred.

By comparing this location with the location of the TBDContainer

class de�nitions, we can �nd out the exact TBDContainer class where

the key is missing. Then, the mocker inserts the missing key into

the TBDContainer’s internal dictionary.

M12. Convert-Literal.When a value error indicates a failure

to convert a string to an integer or �oat, the mocker converts the

relevant TBD class, originally inheriting from the str class, to newly

inherit from int or float classes respectively.

3.2 Unmocker

This section describes Incompleter’s unmocker component,

whose goal is to infer the actual types for mocked types and simplify

the code accordingly. Figure 3 illustrates one unmocking step. After

1 class TBD3:

2 def __init__ ( self, ∗args, ∗∗kwargs ):

3 pass

4 class TBD2:

5 def __init__ ( self, ∗args, ∗∗kwargs ):

6 pass

7 class TBD1:

8 def __init__ ( self ):

9 self.container={ 0: TBD2(), 1: TBD3() }

10 ... ... ...

11 class TBD0:

12 def __init__ ( self, ∗args, ∗∗kwargs ):

13 self.shape = TBD1()

14 df = TBD0 ( )

15 count_row = df.shape[0]

16 count_col = df.shape[1]

17 ( r, c ) = df.shape

(a) Mocked snippet.

1 class TBD3():

2 def __init__ ( self, ∗args, ∗∗kwargs ):

3 pass

4 class TBD2():

5 def __init__ ( self, ∗args, ∗∗kwargs ):

6 pass

7

8

9

10

11 class TBD0():

12 def __init__ ( self, ∗args, ∗∗kwargs ):

13 self.shape = [ TBD2(), TBD3() ]

14 df = TBD0() # pandas.DataFrame

15 count_row = df.shape[0]

16 count_col = df.shape[1]

17 ( r, c ) = df.shape

(b) Unmocked TBD1

Figure 3: Example of unmocking step using “Deduce-List".

Snippet #92 from LExecutor dataset [58].

mocking, the type TBD1 is found to be a container class holding

two instances of other mocked types. The unmocker component

leverages that observation to infer that TBD1 is a list. Incompleter

uses that information to refactor the code snippet by inlining TBD1.

Note the change in the initialization of the instance variable shape

in class TBD0 at line 13.

Type inference consists of two complementary steps: deduc-

tion (Section 3.2.1) and prediction (Section 3.2.2). Deduction re�ects

on the mock premises expressed in code to determine the types

of identi�ers [53]. For example, Incompleter used deduction to

“unmock” TBD1 in the example above. Prediction uses a machine

learning model to predict the types of identi�ers. Incompleter

uses type prediction as a fallback for cases where deduction fails to

determine the type of a mocked type.

Algorithm 2 shows the pseudocode of unmocker. It takes as input

a code snippet B and virtual environment 4=E and returns as output

a refactored code snippet B′, with some mocked types in B resolved.

It is worth noting that Incompleter only replaces types that it

infers to be built-in type (e.g., list, dictionary). Replacing non-built-

in types (i.e., library types and user-de�ned types) requires domain

knowledge. For non-built-in types, Incompleter annotates the

mocked type tbd with the type that it predicts using a neural model,

delegating the rest of the resolution process to the developer. For

example, Incompleter adds a comment to the mocked type TBD0 in

Figure 3 to indicate that its type corresponds to a pandas.DataFrame.

The outer loop of Algorithm 2 (Lines 7-24) iterates through the

set of mocked types in B . A loop iteration tries to infer the type

of the mocked type tbd. Initially, Incompleter uses deduction to

infer the type of tbd (Line 8). Function deduce evaluates the de-

duction rules that Incompleter proposes (Section 3.2.1). If the

deduced type is a built-in type (Line 9), the unmocker calls the

function replace_and_execute to replace the instance of the mocked

type, tbd_instance, with the corresponding deduced value, val, and

executes the modi�ed snippet s′. Considering the example from

Figure 3, tbd corresponds to the type TBD1, tbd_instance corresponds

to the instantiation of that type in the assignment self.shape =

TBD1(), and val corresponds to the list [TBD2(),TBD3()]. If the execu-

tion of B′ is successful, Incompleter proceeds to the next iteration.

785



ISSTA ’24, September 16–20, 2024, Vienna, Austria Ishrak Hayet, Adam Sco�, and Marcelo d’Amorim

Algorithm 2: Unmocker algorithm

1 Input mocked code snippet s and environment env

2 Output unmocked code snippet s′

3 Require: s is free from errors

4 Ensure: coverage(s) = coverage(s′)

5

6 s′ ← s

7 for each tbd in tbds(s) do
8 type, tbd_instance, val← deduce(tbd, s′) // Section 3.2.1

9 if builtin(type) then
10 s′ , err_str, _← replace_and_execute(tbd_instance, val, s′ , env)

11 if len(err_str) > 0 then
12 s′ ← restore_snippet()

13 s′ , type← predict_and_check(tbd, type, s′ , env)

14 end

15 end

16 else
17 if not user_de�ned(type) then
18 s′ , type← predict_and_check(tbd, type, s′ , env)

19 end

20 end

21 if not builtin(type) then
22 s′ ← annotate(tbd, s′)

23 end

24 end

25 return remove_unused_tbd_classes(s′)

26

27 def replace_and_execute (tbd_instance, val, s′ , env):
28 s′ ← replace(tbd_instance, val, s′)

29 return s′ , execute(s′ , env) // execute returns (err_str, cov)

30

31 def predict_and_check (tbd, deduced_type, s′ , env):
32 type, tbd_instance, val← predict(tbd, s′) // Section 3.2.2

33 if is_builtin(type) then
34 s′ , _, cov← replace_and_execute(tbd_instance, val, s′ , env)

35 if coverage_changed(cov) then
36 return restore_snippet(), deduced_type

37 end

38 end

39 return s′ , type

Otherwise, Incompleter reverts to the previous version of the snip-

pet and calls the function predict_and_check to predict the type of

tbd (Line 13). If the deduced type from line 8 is a library type (i.e.,

not a built-in type or a user-de�ned type), unmocker calls the func-

tion predict_and_check to predict the actual type of tbd (Line 18).

Finally, the unmocker annotates the de�nitions of mocked types

with inferred types, if they are not built-in types (Line 22), and

discards no longer used class de�nitions (Line 25).

The function predict_and_check calls the function predict (Sec-

tion 3.2.2) to predict the type of C13 in B′. If the predicted type is

a built-in type, the unmocker attempts to execute the modi�ed

snippet s′ (Line 34), including the corresponding change. If the

coverage pro�le is preserved, the function returns a tuple with

the revised snippet and predicted type. Otherwise, it returns the

restored snippet and the originally deduced type (Line 36).

3.2.1 Type Deduction (IncTD). Type deduction uses properties

from the code to deterministically deduce the type of identi�ers.

Algorithm 2 (Line 8) calls the function deduce for type deduction.

As explained in the previous section, the function deduce takes a

mocked type C13 , whose type we want to infer, and code snip-

pet B , and returns a tripe including the deduced concrete type

and additional meta information. Type deduction supports built-in

types (e.g., list, set, dictionary, int, etc.) and user-de�ned types. Sec-

tion 3.2.2 discusses type prediction, which supports library types.

For a given pair ⟨C13 , B⟩ of mocked type and snippet, the function

deduce scans a list of deduction rules, checking if any rule matches

the input pair. A deduction rule checks if a property '(C13, B), re-

lating C13 and B , holds. Table 2 lists the deduction rules that Incom-

pleter uses. These rules cover user-de�ned types (D1), integer and

string literals (D2 and D3), and collections (D4-D6). For illustration,

let us consider the example from Figure 3. It features a mocked class

TBD1, with an internal dictionary whose keys are 0 and 1. Incom-

pleter uses the rule D4 to infer that TBD1 denotes the type list.

More precisely, the pattern of keys in self.container, being sequen-

tial, leads the unmocker to interpret the related object (self.shape

in TBD0) as an instance of a list containing the elements associated

with the keys. With these rules, the system can e�ectively deduce

objects into built-in types and user-de�ned types.

3.2.2 Type Prediction (IncTP). The type predictor and the type

deducer have the same goal–type inference. Similar to the type

deducer, the type predictor handles built-in types (e.g., string, dict,

set), providing a fallback alternative to the deducer for the cases

uncovered by the deduction rules (Algorithm 2, Line 13). In contrast

to the type deducer, the type predictor handles library types.

Incompleter’s type predictor �ne-tunes an existing SoTA neural

type prediction model [58]. Fine-tuning is a popular technique

to transfer the knowledge learned during pretraining to target a

certain downstream task; a pretrained model (e.g., CodeT5 [66] and

UniXCoder [29]) is further trained for the downstream task on some

amount of supervised data [68]. Incompleter’s type predictor is

modeled as a sequence prediction task that is a �ne-tuned version

of LExecutor’s CodeT5 model [58], which itself is a �ne-tuned

CodeT5 model. CodeT5 is a neural transformer model that takes

as input a sequence of tokens and outputs the generated token

sequence. Since CodeT5 is based on the T5 architecture [49] that

supports multi-task learning, LExecutor and Incompleter both

�ne-tune a CodeT5 model for type inference.

We chose to �ne-tune LExecutor’s CodeT5 model because, in

terms of Top-1 type prediction accuracy, their CodeT5model outper-

forms other baselines, including CodeBERT [25] and Type4Py [43,

58]. LExecutor’s CodeT5 predictor is competent in predicting

built-in types but does not support library type prediction. We

have observed over 30% snippets containing usage of library types.

Moreover, Islam et al. report a high usage of library types in Stack

Over�ow code snippets [34]. So we further �ne-tune LExecutor’s

CodeT5 model to predict library types on top of built-in type pre-

diction and integrate our �ne-tuned CodeT5 model as part of our

comprehensive unmocking strategy. It is worth noting that IncTP

does not use LExecutor’s instrumentation or runtime engine, only

the neural model.

Fine-tuning consists of training a pre-trained model on a set

of input-output pairs. Input to the model begins with a classi�-

cation instruction followed by the name of the mocked type tbd

whose actual type we want to predict and the mocked snippet,

provided as the context. Incompleter uses the executable mocked

snippet instead of the original snippet as the input context as the

786



Feedback-Directed Partial Execution ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Description of Deduction Rules. Incompleter’s type deducer takes as input the pair ⟨C13 , B⟩ of mocked type and snippet,

and deduces the type under column “Type Deduced” if the property relating C13 and B, described under column “Property”,

holds.

Id Type Deduced Property

D1 G C13 and user-de�ned class G (i.e., a class de�ned in snippet B) have overlapping function names. See M2.
D2 int C13 inherits from type int. See M9/M10.
D3 string C13 inherits from type string or implements string-speci�c methods (e.g., upper, lower, strip, etc.). See M9/M10.
D4 list C13 has a container attribute and the container’s keys are in sequential order, or it implements list-speci�c methods (e.g., append, extend, insert, etc.).

This is also the default collection type if a container is present but no other speci�c type information exists. See M6/M11.
D5 dict C13 declares the attribute container and implements dict-speci�c methods (e.g., items, values, keys, etc.). See M2/M6/M11.
D6 set C13 declares the attribute container and implements set-speci�c methods (e.g., add, union, difference, etc.). See M2/M6/M11.

Table 3: Datasets.

Dataset Source Size Use Kind

Dataset 1 Stack Over�ow [58] 241
RQ1

Incomplete
Dataset 2 Stack Over�ow [11] 4.7K Incomplete
Dataset 3 Kaggle [35] 3K RQ2 Complete

mocked snippet contains rich semantic information which is gradu-

ally added to the snippet based on execution feedback and the type

deduction step. The input and output format is provided below:

Input. classify type: <tbd#>: <snippet>

Output. <predicted_type>

In the input, the string literal "classify type" denotes the task

directive for the CodeT5 model, <tbd#> represents the mocked tbd

type for which we need to predict the actual type, and <snippet> rep-

resents the executable mocked snippet. The output <predicted_type>

represents either a built-in or a library type. In algorithm 2, line 32

shows the call to the function predict passing a mocked type, tbd,

and snippet s′. The predict function queries Incompleter’s �ne-

tuned CodeT5 model to predict the actual type of the mocked type

tbd. Considering the example from Figure 3b, Incompleter uses

its type predictor to infer that the mocked type TBD0 corresponds

to the library type pandas.DataFrame.

4 Evaluation

This section reports on the evaluation of Incompleter. We pose

the following research questions:

• RQ1: How does Incompleter perform to successfully execute

incomplete code snippets?

• RQ2: How does Incompleter perform to infer types?

The �rst question compares the performance of Incompleter’s

�rst component, mocker, against the SoTA technique, LExecutor,

in terms of executability and coverage. It also evaluates the contribu-

tion of each rule towards execution. The second question evaluates

the ability of Incompleter’s second component, unmocker, to infer

the types of unde�ned identi�ers and improve the readability of

the mocked code snippets.

4.1 Experimental Setup

Dataset. Table 3 shows the datasets we use for evaluating Incom-

pleter. Dataset 1 consists of 823 snippets that Souza and Pradel [58]

mined from StackOver�ow. We found that that dataset contains

snippets with syntax errors (357), indentation errors (13), and snip-

pets that run without raising any errors (212). To avoid confounding

e�ects, we �lter out snippets with out-of-scope problems (e.g., in-

dentation and syntax errors) and snippets whose executions do not

Table 4: Comparison of executability and coverage metrics

between LExecutor and Incompleter.

Technique Executability
Coverage

Statement Branch

LExecutor 54% 56% 32%
Incompleter 67% 91% 54%

(a) Dataset 1

Technique Executability
Coverage

Statement Branch

LExecutor 44% 60% 29%
Incompleter 54% 83% 48%

(b) Dataset 2

raise errors. After �ltering out those cases, the dataset contains 241

snippets. Given the relatively small size of Dataset 1 and the fact

that Incompleter uses that dataset to mine rules (Section 3.1.1), we

mined 4.7K incomplete snippets from StackOver�ow [11] to create

Dataset 2. RQ1 uses datasets 1 and 2, which contain only incomplete

snippets from StackOver�ow. RQ2 requires a dataset of complete

snippets to enable comparison between the types of the unde�ned

identi�ers that Incompleter infers and the ground truth present

in the complete snippets from the dataset. So, we collected a third

dataset from Kaggle [35] consisting of various tutorial snippets

from di�erent sources [4, 7–10].

Metrics. For RQ1, we use the metrics that LExecutor uses: exe-

cutability and statement coverage [58]. Executability measures the

ability to execute a snippet end-to-end without raising exceptions.

Statement coverage measures the percentage of the statements from

the original snippet that are executed. Additionally, for the snip-

pets that contain branches, we measure the percentage of branches

exercised during code execution. Both the statement and branch

coverage are averaged across all snippets. We use coverage.py [14]

to measure coverage. For RQ2, we use standard metrics to evaluate

classi�cation problems (e.g., accuracy, F1, etc.).

Type Prediction Training.We use the dataset 3 of complete code

snippets to �ne-tune LExecutor’s CodeT5model. The data prepara-

tion consists of the following steps. For each snippet in the dataset,

we remove the �rst assignment statement for an identi�er so the

identi�er becomes unde�ned. Prior to removing the assignment

statement, we dynamically evaluate the expression assigned to the

identi�er (i.e., the right-hand side of the assignment) to obtain the

actual type C of the identi�er (i.e., the ground truth label). This data

preparation results in 3K incomplete snippets where one of the

identi�ers is unde�ned and we know the ground truth type of that

identi�er. Such data preparation step is similar to the one that Souza
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and Pradel use in LExecutor [58]. They execute the training code

to record the types like we do. But, they don’t remove identi�ers to

introduce incompleteness. They use lambda wrappers to capture

the predicted value with or without incompleteness. For Incom-

pleter, however, we need those incompleteness to enable mocks to

be created so that we can train the dataset with the mocks and even-

tually evaluate our performance. For training the model, we use the

mocked snippet as it contains rich semantic information derived

from execution which is bene�cial for type prediction (Section 3.1).

More precisely, we use Incompleter to mock the 3K incomplete

snippets and use the pair of mocked type and mocked snippets

⟨C13, B⟩ to de�ne the model input and use the ground truth type C

to de�ne the expected model output. We split the dataset into 80%

for training and 20% for testing. We use the same model con�gura-

tion as LExecutor’s CodeT5 and train the model on an NVIDIA

RTX4060Ti platform. Considering the example from Figure 3b, the

model predicts variable df as a pandas.DataFrame.

4.2 Answering RQ1: How does Incompleter
perform to successfully execute incomplete
code snippets?

This question evaluates the ability of the mocker component of

Incompleter to modify a given incomplete code snippet to enable

successful execution.

4.2.1 Answering RQ1.1: How Incompleter and LExecutor com-

pare on executability and coverage? Table 4 shows executability and

coverage measurements for Incompleter and LExecutor across

datasets 1 and 2. On dataset 1, with 241 incomplete snippets of

Python code, Incompleter executes 13% more snippets than LEx-

ecutor and covers 35% more statements and 22% more branches

(Table 4a). On the larger dataset. with 4.7K samples, Incompleter

executes 10% more snippets than LExecutor and covers 23% more

statements and 19% more branches (Table 4b).

Figure 4 shows Venn diagrams representing the di�erences and

similarities between LExecutor and Incompleter related to ex-

ecutability. Each set represents the snippets that a technique can

successfully execute. Although LExecutor and Incompleter com-

monly resolve a relatively high percentage of code snippets (40.24%

and 23.61% on datasets 1 and 2, respectively), no technique sub-

sumes the other and the di�erences are signi�cant. Incompleter

fails when a rule is not present or it lacks the dynamic behavioral

cues to deduce a type, whereas it succeeds when such cues are

available and it has a rule to cover the error. In contrast, LExecu-

tor fails either when it mispredicts the type or when it predicts a

dummy object and cannot continue execution. LExecutor succeeds

when it accurately predicts the correct type, which highlights the

static nature of LExecutor’s approach compared to the dynamic,

behavior-driven approach of Incompleter.

Figure 5 shows the distributions of coverage obtained with the

execution of the code snippets that each technique produces. Con-

sidering both datasets, the distributions of coverage metrics are

not normal (Shapiro-Wilk’s p-value< 0.05) and the di�erences in

statement and branch coverage between Incompleter and LExecu-

tor are statistically signi�cant (Mann-Whitney U’s p-value< 0.05).

Figures 5a and 5b show p-values and e�ect sizes.

(a) Dataset 1 (b) Dataset 2

Figure 4: Venn diagrams showing di�erences and common-

alities between Incompleter and LExecutor’s w.r.t. their

ability to execute incomplete Python code snippets.

(a) Dataset 1. p-value< 0.05, Cli�’s
X [65]: stmt (0.49, large), br (0.30,
medium)

(b) Dataset 2. p-value< 0.05 Cli�’s
X [65]: stmt(0.46, large), br (0.28,
medium)

Figure 5: . Distributions of coverage of LExecutor and In-

completer across datasets 1 and 2.

Table 5: Impact of rules on the executability of snippets. p-

exec and f-exec denote partial and full executability, respec-

tively. More (or less) intense shade of gray indicates higher

(respectively, lower) discrepancy in rank between datasets 1

and 2.

Rule
Dataset 1 Dataset 2

p-exec f-exec p-exec f-exec
De�ne-Var 221 104 5186 1566
De�ne-Func 109 53 3205 1252
De�ne-Container 60 34 842 431
Add-Import 66 28 1135 342
Resolve-Module 54 26 1581 644
Create-Resource 26 16 490 140
De�ne-Operator 21 13 428 105
De�ne-Literal 20 12 315 134
De�ne-Key 44 8 948 109
De�ne-Callable 5 3 444 230
De�ne-Length 5 2 79 37
Convert-Literal 2 1 62 19

4.2.2 Answering RQ1.2: What is the contribution of each rule to

execution? Table 5 summarizes the contribution of each rule to

executability. The metric p-exec indicates the number of times a

rule �xed an error that emerged with the execution of the snip-

pet, irrespective of whether or not the �x led to a successful (i.e.,

complete) execution of the snippet. f-exec indicates the number

of times a rule contributed towards the successful execution of

a snippet. Consequently, note that the value of p-exec cannot be

inferior to that of f-exec for a given rule. The “p" in “p-exec" refers

to partial and the “f" in “f-exec" refers to full. Rules appear sorted

in descending order of f-exec values on dataset 1. Shades of gray

indicate the rank di�erence of a rule in the two datasets. We use the
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(b) Dataset 2

Figure 6: Distributions of the number of rules applied per

snippet across datasets 1 and 2. The distributions include

snippets that Incompleter can fully execute and snippets

that are partially executed.

following correspondence of color and rank di�erence: white=0 (i.e.,

no di�erence); light gray=1; medium-light gray=2-3; dark gray=>3.

Note that all rules are relevant but they participate in the resolu-

tion of an issue at di�erent proportions. For example, considering the

group of 54% snippets from dataset 2 that Incompleter resolved,

two rules contribute to �x over 50% of the cases, four rules con-

tribute to �x over 30% of the cases, and six rules contribute to �x

over 11% of the cases. The fact that rule usage is non-uniform does

not come with surprise. For example, De�ne-Var and De�ne-Func

are more commonly applied as variables and functions are the pri-

mary missing elements in incomplete code snippets. Also, note that

often multiple rules are needed to resolve an issue. For example, for

80% of the cases in dataset 2, more than a rule is necessary to resolve

an issue. Figure 6 shows histograms for the number of applied rules

to resolve issues on datasets 1 and 2 to illustrate that.

Summary of RQ1. Incompleter improves over the SoTA on

partial execution on standard evaluation metrics: executability and

coverage. Results also show that all 12 transformation rules the

mocker proposes are impactful, with those related to de�ning func-

tion and variable appearing more impactful than others.

4.3 Answering RQ2: How does Incompleter
perform to infer types?

This question evaluates the ability of the unmocker component

of Incompleter to infer types. We evaluate the following four

alternative approaches to type inference:

• LexTP: LExecutor’s CodeT5 model [58];

• IncTD: Incompleter’s type deduction (Section 3.2.1);

• IncTD+LexTP: Integration of IncTD and LexTP;

• IncTD+IncTP: Incompleter’s type deduction and predic-

tion (Section 3.2).

The su�xes in the names above indicate whether an approach

uses deduction (TD) or prediction (TP) for type inference. It also

indicates what part of the unmocker (Algorithm 2) is modi�ed. The

su�xes TD and TP indicate that the functions deduce and predict are
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KeyError
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Figure 7: Residual error distribution on dataset 1 (sorted by

LExecutor’s error type frequency.)

Table 6: Performance of type inference on dataset 3.

Baseline Acc. Prec. Rec. F1

LexTP 0.17 0.31 0.17 0.21

IncTD 0.23 0.31 0.23 0.27

IncTD+LexTP 0.31 0.29 0.33 0.31

IncTD+IncTP 0.55 0.57 0.60 0.58

respectively replaced with the corresponding approach. For exam-

ple, IncTD+LexTP replaces the function deducewith Incompleter’s

deducer and replaces the function predict with LExecutor’s pre-

dictor. It is worth noting that IncTP is obtained by �ne-tuning

LExecutor’s neural model. Therefore, assuming no loss in predic-

tive power from transfer learning (Section 3.2.2), the combination

IncTD+IncTP should subsume the combination IncTD+LexTP.

Figure 7 shows the distribution of unresolved errors observed in

dataset 1 by kind (of error message) when using LexTP or IncTD

alone. The lower the bar the better. Results show that IncTD pro-

duces fewer type errors compared to LexTP suggesting that type

information of many identi�ers cannot be predicted from static

context alone. Recall that IncTD deduces type information based

on dynamic execution behavior while LexTP predicts type informa-

tion by providing static code context to a language modeling task.

Results also demonstrate that deduction and prediction can com-

plement each other. For example, note that the number of observed

ValueError is less in LexTP compared to IncTD.

Table 6 shows the performance of the various type inference

approaches considering metrics commonly used in prior work on

neural type inference [19, 58, 67], namely accuracy (Acc.), preci-

sion (Prec.), recall (Rec.), and the harmonic mean of precision and

recall (F1). In this case, the problem is to determine whether or

not a technique can correctly identify the type of an identi�er,

i.e., if the predicted type and the ground truth type are an exact

match. Recall that Dataset 3 consists of complete code snippets (Ta-

ble 3), so it is possible to obtain –for comparison– the concrete

types of identi�ers by monitoring the execution of the code snip-

pets. Results show that Incompleter’s type inference (i.e., the

combination IncTD+IncTP) signi�cantly outperforms all other al-

ternative and that each type inference component is relevant. Note

the gradual improvement in F1 as new features are incorporated

LexTP<IncTD<IncTD+LexTP<IncTD+IncTP.

Summary of RQ2. Results show that (1) Incompleter’s type in-

ference performs signi�cantly better than the comparison baselines

and that (2) type deduction and type prediction are both relevant.
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5 Discussion

5.1 Threats to Validity

An external threat to the validity of our approach is the gener-

alizability of the small number of rules that are mined from the

smaller LExecutor dataset. To mitigate this threat, we evaluate

Incompleter on a much larger independently mined dataset and

demonstrate that the same set of rules can execute and cover more

code compared to the SoTA on both the smaller and larger datasets.

An internal threat to validity is that Incompleter takes approxi-

mately 1.2x longer than the SoTA to successfully execute a snippet.

We mitigate this threat by ensuring that Incompleter can achieve

higher executability and coverage at the cost of slightly longer

runtime. A threat to Incompleter’s construct validity arises when

a TBD class fails to reveal an object’s intended behavior. We note

a similar threat in the SoTA where empty DummyObject classes

are used. However, we mitigate the threat by progressively adding

attributes and functions to a TBD class and by integrating a com-

prehensive type deduction and prediction strategy to get as close

as possible to a concrete built-in or library type.

5.2 Limitations

While Incompleter shows promising results, several limitations

warrant discussion. First, the semantic validity of the �xes generated

by Incompleter is not guaranteed. Fixes might require inspection

to ensure they adhere to the intent of the code. Second, creating

and mining the rules that Incompleter uses to handle incomplete

snippets is a manual process, which can be time-consuming. Third,

Incompleter relies on LExecutor’s neural model for type pre-

diction, which is constrained by the distribution of the training

data. Consequently, this limitation a�ects the range of custom (li-

brary) types Incompleter is able to infer. Finally, Incompleter

currently focuses on �xing one �le at a time, which may not be

su�cient for projects with cross-�le dependencies.

6 Case Study: Youtube-dl

This section reports on a case study that contributes to demon-

strate Incompleter’s usefulness and soundness. The study uses

the project Youtube-dl, a highly-popular open-source project to

download YouTube videos [18]. The use case is debugging. More

precisely, the focused task is to reproduce a bug manifested through

a failing test on a partially-de�ned application code. We obtained

test cases of the Youtube-dl project from BugsInPy [57], a public

repository of real-world Python bugs with documented test failures.

We chose BugsInPy for its comprehensive collection of bugs with a

ground truth to evaluate the soundness of Incompleter’s output.

Methodology. Incompleter currently operates in a single Python

�le, so our �rst step is to aggregate all dependent �les in one,

merging the code under test with its corresponding test to obtain

self-contained test �les. Following the consolidation step above, we

identify the buggy function and add incompleteness. For that, we

systematically remove one assignment at a time starting from the

top of the function in the execution path of the bug. Because of the

introduced incompleteness, the execution would encounter run-

time errors before even catching the actual bug. Then, we request

Incompleter to resolve those runtime issues and to reproduce

1 def test_prepare_�lename(): # test function

2 def fname(templ):

3 ydl=YoutubeDL({'outtmpl': templ})

4 return ydl.prepare_�lename(info)

5 assertEqual(fname(‘Hello %(title1)s’),‘Hello $PATH’)

6 class YoutubeDL:

7 def prepare_�lename(self, info_dict): # code under test

8 ...

9 autonumber_size = self.params.get(’autonumber_size’)

10 if autonumber_size is None: autonumber_size = 5 ...

11 �eld_size_compat_map={'playlist_index': ...,'autonumber':

autonumber_size}

12 FIELD_SIZE_COMPAT_RE=r’...’

13 if re.search(FIELD_SIZE_COMPAT_RE, ...)

14 ... ... ...

15 �lename = expand_path(...)

16 return sanitize_path(�lename)

17 if __name__=='__main__': test_prepare_�lename()

Figure 8: YouTube-dl bug(#19 from BugsInPy dataset [57]).

the original bug by advancing the code execution. We selected the

test cases sequentially from bug 1 to bug 28, discarding those that

tested the same logic as previously selected cases or didn’t have

any unique assignments to remove. In this process, we speci�cally

targeted unique assignment statements for removal.

Results. Out of 10 bugs selected for our analysis, corresponding

to 10 test cases, we explored Incompleter’s capability by remov-

ing then testing a total of 15 unique assignments, one at a time.

For some test cases, this process was repeated up to three times,

with a di�erent assignment removed each time. The rationale is

to assess the tool’s e�ectiveness across various complexities of

removed assignments. Incompleter successfully restored six of

these modi�cations to their original assertion errors. Two other

instances resulted in assertion errors similar to the original but

with slight content di�erences, and the remaining 7 modi�cations

led to unresolved errors. On average, two rules were applied to

each assignment removal, with M2 being the most frequently used.

LExecutor had nearly identical performance in terms of total suc-

cessful and unsuccessful restorations, though the content of errors

varied slightly between the two. LExecutor successfully restored

�ve modi�cations to their original assertion errors, three resulted

in the original error with di�erent content, and seven led to un-

resolved errors. For passing cases, LExecutor identi�ed None and

dictionary three times each. For failing cases, LExecutor identi�ed

dictionary the most for three times.

Analysis. Figure 8 shows an excerpt of one of the tests from

YouTube-dl that we analyze. When testing the original code (i.e.,

the code without incompleteness added), execution raises an

AssertionError. We analyze two di�erent variants of this code;

each removing one of the following highlighted assignments from

prepare_filename. After removing autonumber_size’s de�nition, ex-

ecution raises NameError preventing the actual bug from surfacing.

After running the incomplete consolidated code through Incom-

pleter, the execution of the mocked snippet reaches the end of

the execution path resulting the same assertion error as that of

the original bug. Removal of the FIELD_SIZE_COMPAT_RE’s de�nition

also leads to a NameError. After processing this code through Incom-

pleter, execution encounters a TypeError caused by the regular
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expression library expecting a compiled string. Since the error does

not specify which TBD object requires correction, Incompleter

fails to resolve the issue, preventing execution from completing.

In this case study, both Incompleter and LExecutor were able

to reproduce a considerable number of real-world bugs from the

YouTube-DL project. In a few cases, both techniques could trigger a

bug with a similar AssertionError message as that of the originally

reported bug. In some cases, neither of the techniques could repro-

duce the bug. However, the majority of the cases suggest the bene�t

of using both Incompleter and LExecutor to enable partial exe-

cution of incomplete buggy code snippets for detecting bugs that

would otherwise remain elusive had the code stayed incomplete.

7 Related Work

Partial code execution. The problem of analyzing and partially exe-

cuting incomplete code has been studied in di�erent programming

languages [21, 22, 28, 45, 46, 59]. In Java, Dong et al. solve type

constraints against a knowledge base to resolve unknown import

statements from incomplete snippets [23] and Terragni et al. devel-

oped CSNIPPEX, which automates the synthesis of compilable Java

code from incomplete snippets by resolving external dependencies

and generating necessary import statements [61]. In Python, LEx-

ecutor infers built-in types of unde�ned variables, attributes, and

return values of functions. The inferred types are later mapped

to a �xed number of concrete values [58]. We show that (1) In-

completer is complementary to LExecutor (Figure 4) and (2) can

leverage learning for improved type prediction (Section 3.2.2).

Code completion. Code completion is the task of using prior con-

text to complete code [38, 39, 50]. Zhang et al. proposed a retrieval-

augmented code completion while accounting for repository-level

information [69]. Liu et al. introduced a multi-task learning model

to complete code identi�ers and types [40]. Subramanian et al.

presented Baker, a tool that links source code examples to API

documentation, thereby enhancing traditional documentation with

practical examples and facilitating code completion [60]. Incom-

pleter generates code similar to code completion models but the

code is generated not as a next statement prediction task but instead

to remove incompleteness scattered throughout the code.

Code repair. Both rule-based and neural-based approaches have

been applied in code repair, which automatically detects and �xes

bugs [30, 36, 54]. While Incompleter does not perform code repair

itself, it provides an environment conducive to detecting and fa-

cilitating the repair of bugs through partial execution by de�ning

missing identi�ers and creating necessary resources.

Code reuse. NLP2Code [16] and Blueprint [15] are tools proposed

to facilitate code reuse. Reid et al. [51] proposed Node Code Query

(NCQ), a tool that integrates JavaScript package search, snippet

search, and linting-based �xes within a Read-Eval-Print Loop en-

vironment to facilitate code search. Terragni and Salza introduced

APIzator which uses static analysis-based rules to convert a Java

code snippet from Stack Over�ow into a reusable wrapper method

with automatically identi�ed arguments and return values [62].

Incompleter also uses rules to mock snippets and deduce types

but does so with dynamic feedback from executions. Partial code

execution and code search are di�erent problems. It remains to

evaluate how they can complement each other.

Mock generation. In software testing, di�erent objects, depen-

dencies, and services are implemented as mock components for

faster deterministic, and isolated testing [24, 37, 47, 63]. Recently,

Salva and Blot showed an approach to develop mocks using model

learning [55]. We remain to assess how Incompleter can integrate

with and bene�t from such approaches.

Symbolic execution. Symbolic execution is a technique for test in-

put generation that uses constraint solvers to generate inputs from

constraints denoting program paths. Ruaro et al.’s [52] proposed

SyML, a technique that uses supervised learning for prioritizing

execution paths in dynamic symbolic execution for vulnerability

discovery in binary programs. Sapra et al. [56] proposed CutiePy, a

dynamic symbolic execution tool tailored for Python, which man-

ages the language’s dynamic typing and semantics by balancing

concrete and symbolic execution strategies. Similar to symbolic

execution we create symbols in the form of generic types to mock

unde�ned identi�ers in the code. We then use a combination of

rule-based deduction and neural prediction of generic types de-

�ned in the mocked snippet. We remain to evaluate the integration

of symbolic execution and Incompleter for the determination of

concrete values.

Other Related Works. Neural techniques have been applied for

inferring unknown types of identi�ers in code [13, 17, 20, 44, 48].

Inline testing has been recently proposed to test speci�c code state-

ments [41, 42]. Unlike our approach, inline testing ensures the

correctness of fully de�ned code blocks by validating against pre-

de�ned oracles. Inline testing and partial code execution are com-

plementary problems.

8 Conclusion

Partial execution is the problem of executing a code fragment with

missing elements, such as variable and function de�nitions. Partial

execution enables several applications, including dynamic analyses

and debugging. We propose Incompleter, a technique for partial

execution that leverages execution feedback to progressively com-

plete a code snippet. Results show that Incompleter obtains higher

executability and coverage compared to LExecutor [58].

Considering a dataset of 4.7K incomplete StackOver�ow snippets,

Incompleter enables the execution of 10% more code snippets

compared to LExecutor and covers 23% more statements. We also

show that Incompleter’s type inference signi�cantly improves

over LExecutor’s type inference, with a 37% higher F1 score. We

also conduct a case study to demonstrate Incompleter’s usefulness.

Results show that Incompleter faithfully reproduces 8 of the 15

bugs of the program under test.

Data Availability

The source code and data are publicly available [6, 31].
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