
Faster Explicit-Trace Monitoring-Oriented Programming for

Runtime Verification of Software Tests

KEVIN GUAN, Cornell University, USA
MARCELO D’AMORIM, North Carolina State University, USA
OWOLABI LEGUNSEN, Cornell University, USA

Runtime verification (RV) monitors program executions for conformance with formal specifications (specs).
This paper concerns Monitoring-Oriented Programming (MOP), the only RV approach shown to scale to
thousands of open-source GitHub projects when simultaneously monitoring passing unit tests against dozens
of specs. Explicitly storing traces—sequences of spec-related program events—can make it easier to debug spec
violations or to monitor tests against hyperproperties, which requires reasoning about sets of traces. But, most
online MOP algorithms are implicit trace, i.e. they work event by event to avoid the time and space costs of
storing traces. Yet, TraceMOP, the only explicit-trace online MOP algorithm, is often too slow and often fails.

We propose LazyMOP, a faster explicit-trace online MOP algorithm for RV of tests that is enabled by three
simple optimizations. First, whereas all existing online MOP algorithms eagerly monitor all events as they
occur, LazyMOP lazily stores only unique traces at runtime and monitors them just before the test run ends.
Lazy monitoring is inspired by a recent finding: 99.87% of traces during RV of tests are duplicates. Second,
to speed up trace storage, LazyMOP encodes events and their locations as integers, and amortizes the cost
of looking up locations across events. Lastly, LazyMOP only synchronizes accesses to its trace store after
detecting multi-threading, unlike TraceMOP’s eager and wasteful synchronization of all accesses.

On 179 Java open-source projects, LazyMOP is up to 4.9x faster and uses 4.8x less memory than TraceMOP,
finding the same traces (modulo test non-determinism) and violations. We show LazyMOP’s usefulness in the
context of software evolution, where tests are re-run after each code change. LazyMOP𝑒 optimizes LazyMOP
in this context by generating fewer duplicate traces. Using unique traces from one code version, LazyMOP𝑒
finds all pairs of method𝑚 and spec 𝑠 , where all traces for 𝑠 in𝑚 are identical. Then, in a future version,
LazyMOP𝑒 generates and monitors only one trace of 𝑠 in𝑚. LazyMOP𝑒 is up to 3.9x faster than LazyMOP and
it speeds up two recent techniques that speed up RV during evolution by up to 4.6x with no loss in violations.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: runtime verification, software testing

ACM Reference Format:

Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen. 2025. Faster Explicit-Trace Monitoring-Oriented
Programming for Runtime Verification of Software Tests. Proc. ACM Program. Lang. 9, OOPSLA2, Article 405
(October 2025), 30 pages. https://doi.org/10.1145/3763183

1 Introduction

Runtime verification (RV) [41, 62, 74] monitors program executions against formal specifica-
tions (specs). Unless the context indicates otherwise, “RV” in this paper is Monitoring-Oriented
Programming (MOP) [29], the only RV style shown to scale for simultaneously monitoring dozens
of specs against passing tests in thousands of real-world projects [51, 67]. RV of such tests against

Authors’ Contact Information: Kevin Guan, Cornell University, Ithaca, NY, USA, kzg5@cornell.edu; Marcelo d’Amorim,
North Carolina State University, Raleigh, NC, USA, mdamori@ncsu.edu; Owolabi Legunsen, Cornell University, Ithaca, NY,
USA, legunsen@cornell.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART405
https://doi.org/10.1145/3763183

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 405. Publication date: October 2025.

https://orcid.org/0009-0004-4553-7474
https://orcid.org/0000-0002-1323-8769
https://orcid.org/0000-0001-5631-4816
https://doi.org/10.1145/3763183
https://orcid.org/0009-0004-4553-7474
https://orcid.org/0000-0002-1323-8769
https://orcid.org/0000-0001-5631-4816
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763183

405:2 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

specs of correct usage protocols of JDK APIs helped find hundreds of confirmed bugs [77, 79, 92]
because these (often multi-object) typestate [123] specs provide additional test oracles. Our results
are limited to these kinds of specs, which were also used in these prior works on RV during testing.

MOP works in three main steps. First, a program is instrumented based on a given set of specs,
so that spec-related events (e.g., method calls and field accesses) are signaled at runtime. Second,
monitors—usually automata—are dynamically synthesized to check if event sequences, i.e., traces,
satisfy the specs. Finally, monitors print warnings or perform error recovery if a spec is violated.

Most online MOP algorithms [26, 30, 31, 105] are implicit-trace: they work event by event without
explicitly storing traces. Such algorithms optimize for RV of deployed systems, where the time and
space costs to store traces are prohibitive. An exception is TraceMOP [53, 125], which stores traces
but is often much slower than state-of-the-art (SoTA) implicit-trace JavaMOP [69, 87] and often
fails (§4), making it hard to use in continuous integration (CI). Explicit-trace offline MOP [31] logs
all events and checks them offline, but is often much slower and takes more space than TraceMOP.
We propose LazyMOP, a faster explicit-trace online MOP algorithm for RV during testing.

LazyMOP can enable six important applications (A1-A6):
A1. Speeding up RV during CI. LazyMOP can enable newways of using traces to speed up RV during
CI. For example, we combine LazyMOP with existing evolution-aware techniques that speed up
RV during CI by re-monitoring only specs related to code affected by changes [80, 82, 131].
A2. Better violation debugging. Violations take many hours to debug [77, 79, 92] mostly because
current MOP algorithms only report the location of the last event in violating traces and developers
must manually reconstruct violating traces. LazyMOP can enable semi-automated debugging for
reasoning jointly about code and violating traces, and user studies on doing so.
A3. Root causing violations. Test non-determinism leads to different violations in multiple runs on
the same passing tests and specs [52]. Such flaky violations make it hard to compare RV tools [51,
52], and cause false positives/negatives. Comparing traces helps root-cause flaky violations [53].
LazyMOP can enable new semi-automated ways to root-cause flaky violations.
A4. Monitoring hyperproperties. Non-functional, e.g., security, policies are often hyperproper-
ties [32]; monitoring them requires checking if sets of traces are in a theoretical “good” set of sets
of traces. Many works on RV of hyperproperties [1, 16, 24, 42, 43, 56, 57, 96] were evaluated offline.
LazyMOP can enable new research on online monitoring of hyperproperties during CI.
A5. Test-suite reduction (TSR) for RV. No prior work speeds up RV via TSR [70, 110, 111, 113, 116,
130, 135], which speeds up testing by minimizing the redundancy among tests—two tests satisfying
the same test requirements (e.g., covered statements or killed mutants) are redundant with each
other. LazyMOP can help specialize TSR for RV, by using traces as test requirements.
A6. Trace-guided test generation. RV can only monitor executed program paths. LazyMOP can en-
able new techniques that use previously-seen traces as feedback to drive automated test generation
to previously-uncovered paths that are more likely to signal spec-related events.
LazyMOP aims to perform explicit-trace RV of tests at near implicit-trace JavaMOP speeds. To

do so, LazyMOP embodies four simple optimizations, three of which are new in this paper:
1. Lazy monitoring. LazyMOP collects unique traces during execution and monitors each unique

trace once, just before program termination. Lazy monitoring speeds up explicit-trace RV by
exploiting the high repetitiveness and wastefulness of RV during testing—99.87% of monitored
traces cannot find new bugs: they are duplicates of the other 0.13% [51]. Lazy monitoring is for
testing. In deployment, it is crucial to eagerly monitor events as soon as they are signaled [3, 41].

2. Compact trace store. LazyMOP adapts TraceMOP’s trie-like data structure to only store
unique traces; it (i) saves space by storing shared trace prefixes once; (ii) tracks each event’s
parameters; and (iii) adapts a trace-slicing algorithm [26] to find the right prefix for new events.

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:3

1BAOS(ByteArrayOutputStream b, OutputStream o) {

2 creation event init after(ByteArrayOutputStream b) returning(OutputStream o) :

3 call(OutputStream+.new(..)) && args(b, ..) {}

4 event write before(OutputStream o) : call(* OutputStream+.write*(..)) && target(o) {}

5 event flush before(OutputStream o) : call(* OutputStream+.flush(..)) && target(o) {}

6 event close before(OutputStream o) : call(* OutputStream+.close(..)) && target(o) {}

7 event tobytearray before(ByteArrayOutputStream b):call(* ByteArrayOutputStream+.toByteArray(..))&&target(b){}
8 event tostring before(ByteArrayOutputStream b) : call(* ByteArrayOutputStream+.toString(..)) && target(b) {}

9 fsm : // see Fig 3

10 @fail {/*print violation*/)} }

Fig. 1. The ByteArrayOutputStream_FlushBeforeRetrieve (BAOS) spec, written in an AspectJ-based DSL.

3. Event encoding. For fast trace store access, LazyMOP encodes each event and its location as an
integer that is decoded before lazy monitoring. So, each LazyMOP “event” is a (name, location)
pair. LazyMOP also amortizes the cost of location look-up across all events at a location.

4. On-demand synchronization. LazyMOP synchronizes trace-store accesses only after wit-
nessing multi-threading in monitored code. Locking RV data structures induces non-trivial
overheads [51], but avoiding those costs during eager monitoring is hard and requires potentially
costly sound static analysis of the monitored code or specializing RV per program.
We compare LazyMOP’s overheads and violations with those of TraceMOP, the SoTA explicit-

trace online MOP algorithm. On 179 open-source projects, LazyMOP is up to 4.9x (avg. 1.9x) faster
and uses up to 4.8x (avg. 1.6x) less peak memory than TraceMOP, finding the same traces (modulo
test non-determinism) and violations. Also, LazyMOP finishes in 18 projects where TraceMOP
does not. Surprisingly, LazyMOP even outperforms JavaMOP on 33 projects where the cost of
repeatedly and eagerly monitoring duplicate traces dominates JavaMOP’s time.

To begin showing LazyMOP’s usefulness, we also propose LazyMOP𝑒 to speed up RV as software
evolves, towards A1 above. LazyMOP𝑒 exploits a finding from a formative study that we conduct
(§3.2.1): all events in many duplicate traces are from the same method. On top of savings that
LazyMOP obtains by reducing the cost of monitoring duplicate traces, LazyMOP𝑒 aims to also
reduce the costs of generating duplicate traces. So, in one code version, LazyMOP𝑒 finds all (method
𝑚, spec 𝑠) pairs where duplicate traces for 𝑠 in𝑚 are identical and have only events in𝑚. Then,
LazyMOP𝑒 transforms all such𝑚 so only one trace of 𝑠 is generated in𝑚 in the next version. §3.2
discusses how LazyMOP𝑒 incrementally detects and maintains the set of (𝑚, 𝑠) as code evolves.

We measure LazyMOP𝑒 ’s overhead reduction and empirically evaluate its safety (i.e., the ability
to find all new violations after code changes) in two ways, using 2,401 versions of 104 projects.
First, we compare LazyMOP𝑒 with two implicit-trace evolution-aware RV techniques—psc1 and
pscℓ3 [82, 131]. LazyMOP𝑒 is up to 3.1x faster than, and as safe as psc1 and ps

cℓ
3 . Second, we combine

these techniques with LazyMOP𝑒 , yielding speedups of up to 4.6x without making them less safe.
This paper makes the following contributions.

★ Optimizations. LazyMOP’s three simple optimizations speed up explicit-trace RV of tests.
★ Characterizing Duplicate Traces.We study duplicate traces, to better understand how they

manifest in real-world projects and how to exploit them for faster RV during software evolution.
★ Combination. Based on a study finding, LazyMOP𝑒 combines LazyMOP with targeted disabling

of monitoring during CI when all events in duplicated traces are in the same method.
LazyMOP, LazyMOP𝑒 , and all our artifacts are at https://github.com/SoftEngResearch/lazymop.

2 Background

First, §2.1 illustrates MOP via (i) a spec of correct Java API usage; (ii) how implicit-trace JavaMOP
works; (iii) some JavaMOP limitations that motivate explicit-trace RV; and (iv) how explicit-trace
TraceMOP works. Then, §2.2 dives deeper into the MOP algorithms in JavaMOP and TraceMOP.

https://github.com/SoftEngResearch/lazymop

405:4 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

1 public class TestSerializable extends TestCase {

2 public static Object cloneViaSerialization (Serializable obj) throws IOException, ClassNotFoundException {

3 ByteArrayOutputStream baos = new ByteArrayOutputStream ();

4 ObjectOutputStream oos = new ObjectOutputStream (baos); /∗INSTR: BAOS.init∗/

5 /∗INSTR: BAOS.write∗/ oos.writeObject (obj);

6 ByteArrayInputStream bias = new ByteArrayInputStream (/∗INSTR: BAOS.tobytearray∗/ baos.toByteArray ());

7 ObjectInputStream ois = new ObjectInputStream (bias);

8 return ois.readObject (); }

9 }
10 public class TestAlphabet extends TestCase {

11 public void testReadResolve () throws IOException, ClassNotFoundException {...

12 Alphabet dict2 = (Alphabet) TestSerializable.cloneViaSerialization (dict); ...}

13 }
14 public class TestLabelsSequence extends TestCase {

15 public void testSerializable () throws IOException, ClassNotFoundException {...

16 LabelsSequence lblseq2 = (LabelsSequence) TestSerializable.cloneViaSerialization (lblseq); ...}}

Fig. 2. An example of instrumented code and some of its unit tests.

2.1 MOP by Examples

A MOP spec. Fig 1 shows the ByteArrayOutputStream_FlushBeforeRetrieve (BAOS) spec; it is
violated if an OutputStream instance os that is built on a ByteArrayOutputStream instance baos calls
baos.toByteArray or baos.toString before closing os, possibly reading incomplete data. BAOS
helped find several bugs that passing tests alone missed [77, 79]. BAOS and scores of other specs
were formalized from natural language in the Javadoc of JDK APIs [76, 87]. These specs are
essentially (multi-object) typestate protocols expressed in past- and future-time linear temporal
logic (LTL), extended regular expressions (ERE), finite-state machines (FSM), etc.

Like BAOS, all specs in this paper consist of event definitions (lines 2–8), a formal safety property
defined over events (line 9), and a handler that is triggered if the property is violated (line 10).
Events and their parameters. Each event definition has a name and a list of parameters that it binds.
For example, lines 2–3 define event “init”; each time it is signaled at runtime, its parameters
are the ByteArrayOutputStream argument and the returned OutputStream, corresponding to the
newly created object of that type. The union of parameters in all event definitions forms a spec’s
parameters (line 1). Parameters are important in a MOP spec because the safety property is
universally quantified. For example, line 1 in Fig 1 means that MOP must check the traces related
to BAOS for all pairs of OutputStream and ByteArrayOutputStream related by init. In addition
to init, BAOS defines five other events: (i) write captures calls to o.write*() (methods whose
names start with write); (ii) flush captures calls to o.flush(); (iii) close captures calls to o.close();
(iv) tobytearray captures calls to b.toByteArray(); and (v) tostring captures calls to b.toString().

Fig. 3. BAOS’s FSM; its violating

state (not shown) is reached on

seeing an event with no transi-

tion from the current state.

Properties and handlers. Line 9 describes BAOS’s safety property as
an FSM shown in Fig 3; it is violated if a monitor sees an event for
which no transition exists from the current state. It is hard to check
violations of BAOS with testing alone. RV triggers the handler if
a trace violates this property. Handlers can be any user-provided
code, e.g., for error-recovery when RV is used in deployment. For
testing, handlers simply print messages to help debug violations.
Implicit-trace RV with JavaMOP. Fig 2 shows simplified code
from project mimno/Mallet. To signal relevant BAOS events at run-
time, JavaMOP first instruments the code based on BAOS’s event
definitions. The after keyword in BAOS’s init event definition (Fig 1, line 2) causes JavaMOP-
instrumented code to signal an init event after calling “new OutputStream(baos)” (Fig 2, line 4).
Similarly, the before keyword (Fig 1, line 4) causes JavaMOP-instrumented code to signal before
calling oos.writeObject(obj) (Fig 2, line 5), and line 7 in Fig 1 causes JavaMOP-instrumented code

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:5

to signal before calling baos.toByteArray() (Fig 2, line 6). The creation keyword on line 2 in Fig 1
causes JavaMOP to synthesize a new BAOS monitor when each test calls line 4 in Fig 2.
Four subtle points are essential to understanding MOP. First, we can see that JavaMOP should

create two monitors in Fig 2. Monitor 𝑚1 sees trace 𝜏1 = init⟨baos1, os1⟩ { write⟨os1⟩ {
tobytearray⟨baos1⟩, and𝑚2 sees 𝜏2 = init⟨baos2, os2⟩ { write⟨os2⟩ { tobytearray⟨baos2⟩1. But,
JavaMOP’s online MOP algorithm cannot see this fact a priori, since it eagerly processes each event
as it arises. In fact, with multi-threading, events in 𝜏1 and 𝜏2 could be signaled in an interleaving
manner. MOP uses a parametric trace slicing algorithm [26, 31] (§2.2) to decide when to create
monitors and to correctly dispatch signaled events to them, based on event parameters.

Second, for efficiency reasons, JavaMOP synthesizes monitors (e.g., Fig 3) with only event names
in their alphabets (in the automata-theoretic sense). But, elements in 𝜏1 and 𝜏2 are event names
plus parameter instances. In MOP, 𝜏1 and 𝜏2 are called parametric traces (§2.2). Parametric trace
slicing also “forgets” parameter instances to obtain non-parametric traces that each monitor sees.
Third, JavaMOP does not store traces that monitors see. Rather, monitors transition to a next

(potentially violating) state after seeing an event, then discards that event. So, we say JavaMOP
performs implicit-trace RV. In fact, although most online RV algorithms that we know are also
implicit-trace [10, 28, 34, 87], they often incur high overheads. So, avoiding the time and space costs
to explicitly track monitored traces—which can be up to billions per project [82]—is conventionally
seen as prudent, especially when using RV to monitor deployed systems.
Finally, if the state of a parameter instance (e.g., baos1, os2) is essential to determining spec

violations, then (i) different event definitions (and names) can be used to track when parameter
instances’ states change at runtime; or (ii) that state change is included in what it means for an
event to be triggered. In either case, for all MOP specs in this paper, it is sufficient to only reason
about names of signaled events when checking for violations. For example, BAOS is not concerned
with the state of its parameters (the .. in its event definitions mean “don’t care”).
Some JavaMOP Limitations that Motivate Explicit-trace RV. Implicit-trace RV algorithms
cannot enable the applications that motivate explicit-trace RV (e.g., A1–A6 in §1). We discuss
limitations of implicit-trace JavaMOP that motivate two of those applications here.
JavaMOP-reported violations take many person hours to debug [77, 79, 92]. For example, we

can see that 𝜏1 and 𝜏2 violate BAOS: there is no transition on tobytearray out of the writing state
in Fig 3. Yet, when monitoring testReadResolve and testReadResolve (both call cloneViaSerializ
ation) against BAOS in Fig 2, the only feedback a user gets from JavaMOP is a message like “BAOS
was violated on line 6”. That is, JavaMOP only reports the location of the last event in a violating
trace. Users must then (i) manually reconstruct the trace that monitors see, including for events in
third-party library binaries; and then (ii) reason jointly about the spec and the reconstructed trace.
Definition 1. Two traces for a spec are identical if they are the same sequence of non-parametric
events and the event at each position in both traces is signaled at the same code location. If multiple
monitors observe identical traces, those traces are repeatedly and identically monitored.
During RV of tests, repeatedly monitored identical traces are generated in paths that are in

loops [51, 98], or methods that are called multiple times [51]. But, there is no bug-finding benefit to
monitoring identical traces more than once. For example, due to “forgetting” parameter instances
during trace slicing,𝑚1 and𝑚2 eventually see identical traces: 𝜏1 and 𝜏2 become 𝜏 = init:4 {
write:5 { tobytearray:6, where integers after colons are line numbers where events are signaled.
Since𝑚1 and𝑚2 see identical traces, only one of them is necessary to find the BAOS violation. In
fact, many similar tests exist in mimno/Mallet that produce 𝜏 .

1For simplicity, we use subscripts to uniquely identify parameter instances; JavaMOP uses weak references [87].

405:6 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Implicit-trace JavaMOP does not track event locations or traces, so it cannot determine if traces
are identical. LazyMOP aims to speed up explicit-trace MOP-style RV by exploiting findings that
(i) 99.87% of traces are identical during RV of tests; and (ii) monitoring overhead is often dominated
by the cost of repeatedly monitoring identical traces hundreds of millions of times [51].
Limitation and Scope. Definition 1 and our claim about the wastefulness of repeatedly monitoring
identical traces is limited to (i) our specs of correct Java API usage protocols, so it may not apply to
other kinds of specs, like the absence of data races; and (ii) monitoring those specs to find more
bugs during testing—in deployment-time RV, repeatedly monitoring identical traces is essential.
Explicit-traceRVwith TraceMOP. TraceMOP extends JavaMOP by storing traces that monitors
see in a store that is shared by all monitors for all specs [53]. TraceMOP’s shared trace store
improves over Guan and Legunsen’s naïve approach, which simply adds a list field to each monitor
object [51]. That naïve approach often does not scale well because (i) it is not possible to predict
the length of each trace, so for monitors that see tens of thousands of events, frequent resizing of
enhanced monitors’ list fields is very costly; and (ii) separately tracking hundreds of millions of
repeatedly monitored identical traces easily overwhelms memory or disk storage. §2.2 discusses
how TraceMOP’s trace store works with JavaMOP’s monitor indexing tree. Although TraceMOP’s
trace store is more efficient, and succeeds on more projects, than the naïve approach, TraceMOP
is still up to 10.3x, or 7.1 hours slower than JavaMOP, and crashes on several projects. These
performance limits of TraceMOP, whose trace store already exploits prior work’s finding on
dominance of repeatedly monitored identical traces, suggest the need for new and faster explicit-
trace MOP-style RV algorithms. LazyMOP is such an algorithm; its optimizations target the main
sources of inefficiency that we observe from profiling TraceMOP (Fig 8).

2.2 AQuick Algorithmic Tour of MOP and its Incarnation in JavaMOP and TraceMOP

Preliminaries. A trace is a sequence of events [102]. A parametric event has abstract parameters
that are bound to heap objects at runtime. A parametric trace contains parametric events. A spec
encodes a property thatmaps traces to categories (e.g., violating, not-violating). In this paper, specs
encode parametric properties that map parametric traces to categories. Consider parametric trace
𝜏3 = init(baos3, os3) { write(os3) { flush(os4) { tobytearray(baos4) { tobytearray(baos3).
Naïvely ignoring the parameters yields non-parametric trace 𝜏 ′3 = init { write { flush {
tobytearray { tobytearray, for which the BAOS monitor in Fig 3 wrongly fails to find a violation.
MOP uses parametric trace slicing [26, 31], defined shortly, to correctly handle parametric traces.
A parameter instance 𝜃 is a partial function from spec parameter types to objects. So, in 𝜏3, the

init event’s parameter instance is 𝜃1 = ⟨ByteArrayOutputStream → baos3, OutputStream → os3⟩,
or 𝜃1 = ⟨baos3, os3⟩ for short. Similarly, the parameter instance of the flush event in 𝜏3 is 𝜃2 = ⟨os4⟩;
it binds no object to the ByteArrayOutputStream type. Lastly, the parameter instance of the last
tobytearray event in 𝜏3 is 𝜃3 = ⟨baos3⟩; it binds no object to OutputStream.

Next, we repeat definitions from [26, 30, 31, 105] verbatim, to help explain MOP and trace slicing.
Definition 2. Parameter instances 𝜃 and 𝜃 ′ are compatible if for any parameter 𝑥 ∈ Dom(𝜃) ∩
Dom(𝜃 ′), 𝜃 (𝑥) = 𝜃 ′ (𝑥), where Dom(𝜃) denotes 𝜃 ’s domain. If 𝜃 and 𝜃 ′ are compatible, we can
combine them, written 𝜃 ⊔ 𝜃 ′, as follows:

(𝜃 ⊔ 𝜃 ′) (𝑥) =


𝜃 (𝑥) when 𝜃 (𝑥) is defined
𝜃 ′ (𝑥) when 𝜃 ′ (𝑥) is defined
undefined otherwise

𝜃 ′ is less informative than 𝜃 , denoted as 𝜃 ′ ⊑ 𝜃 , iff. for any 𝑥 ∈ 𝑋 , where 𝑋 is a set of parameter
types, if 𝜃 ′ (𝑥) is defined then 𝜃 (𝑥) is also defined and 𝜃 ′ (𝑥) = 𝜃 (𝑥). ⊑ is a partial order.

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:7

In 𝜏3, 𝜃1 is not compatible with 𝜃2: they “disagree” on the object bound to OutputStream. But, 𝜃1
is compatible with 𝜃3 as they “agree” on parameter baos3 that they bind to ByteArrayOutputStream.
Definition 3. For parametric trace 𝜏 and parameter instance 𝜃 , the 𝜃-trace slice 𝜏 ↾𝜃 is a non-
parametric trace defined recursively as:
• 𝜖 ↾𝜃= 𝜖 , where 𝜖 is the empty trace/word, and

• (𝜏 𝑒 ⟨𝜃 ′⟩) ↾𝜃=
{
(𝜏 ↾𝜃) 𝑒 when 𝜃 ′ is less informative than 𝜃 , i.e., 𝜃 ′ ⊑ 𝜃

𝜏 ↾𝜃 when 𝜃 ′ is not less informative than 𝜃 , i.e., 𝜃 ′ @ 𝜃

A trace slice is a projection of a parametric trace onto a set of compatible parameter instances.
Trace slicing decomposes a parametric trace 𝜏 into non-parametric slices for each compatible set of
parameter instances 𝜃 and their combinations. Trace slice 𝜏 ↾𝜃 first projects 𝜏 onto 𝜃 , discarding
events whose parameters are not compatible with 𝜃 . Then, (𝜏 ↾𝜃) 𝑒 “forgets” the parameters to
obtain a non-parametric trace slice—a sequence of event names (with no parameters)—so that
monitors do not spend time reasoning about parameters. Applying Definition 3 to 𝜏3 yields two
slices 𝜏13 = init { write { tobytearray, which violates a BAOS monitor, and 𝜏23 = flush {
tobytearray for which no init event triggers BAOS monitor creation from baos4 and os4.
JavaMOP’s Monitoring Algorithm. We first use an abstract example to illustrate JavaMOP’s
event-by-event online algorithm D⟨𝑋 ⟩ (Algorithm 1) and motivate its technical details that we
present next. Say the only parameter instance seen so far is 𝜃𝑎 = ⟨𝑎1⟩, whose slice 𝑒1 { 𝑒2 was
checked by monitor 𝑚1. If event 𝑒3 (𝜃𝑏 = ⟨𝑎1, 𝑏1⟩) arrives next, D⟨𝑋 ⟩ clones monitor 𝑚1 in its
current state to check 𝜃𝑏 ’s slice, 𝑒1 { 𝑒2 { 𝑒3. The reason is that 𝜃𝑏 is more informative than
𝜃𝑎 , and 𝜃𝑎 is the most informative compatible instance seen so far that is less informative than 𝜃𝑏 .
D⟨𝑋 ⟩ tracks𝑚1’s and𝑚2’s states, in case future events’ parameter instances are more informative
than 𝜃𝑎 or 𝜃𝑏 . Say event 𝑒4 (𝜃𝑐 = ⟨𝑎1, 𝑏2⟩) arrives next. 𝜃𝑐 is more informative than 𝜃𝑎 but not 𝜃𝑏 .
So, D⟨𝑋 ⟩ clones𝑚3 from𝑚1 to check 𝜃𝑐 ’s slice, 𝑒1 { 𝑒2 { 𝑒4. If event 𝑒5 (𝜃𝑑 = ⟨𝑎1, 𝑏1, 𝑐1⟩) arrives
next, the most informative compatible parameter instance seen so far that is less informative than
𝜃𝑑 is 𝜃𝑏 . So, D⟨𝑋 ⟩ clones monitor𝑚4 from𝑚2 to check 𝜃𝑑 ’s slice: 𝑒1 { 𝑒2 { 𝑒3 { 𝑒5.
Remark. For simplicity, we follow prior work and only describe the core of all MOP algorithms in this
paper, leaving out many implementation details. In particular, we only present how each algorithm
handles an event and leave out important details on spec compilation, instrumentation, simultaneous
monitoring of specs, monitor garbage collection, etc. [23, 29, 68, 69, 87, 99]. So, despite their relative
simplicity in our presentation, implementations of each algorithm in JavaMOP, TraceMOP, and
LazyMOP involve thousands of lines of Java code.
The inputs to D⟨𝑋 ⟩ (Algorithm 1) are a property parameter enable set [26] enable𝑋G (computed

once per spec at compile time) and a template 𝑀 (e.g., a Java class definition) for synthesizing
monitors for a spec. Intuitively, enable𝑋G allows D⟨𝑋 ⟩ to avoid creating useless monitors whose
slice cannot reach a violating state. Such monitors only consume memory and slow down RV. In
practice, enable𝑋G is a map from each event name 𝑒 to a set of sets of parameter types, each of which
denotes parameters that must have been seen before 𝑒 occurs for a monitor to be able to reach a
violating state. The enable𝑋G for BAOS maps all its six event names to the set of sets {{𝑏, 𝑜}} where
b is a ByteArrayOutputStream, and o is an OutputStream.
D⟨𝑋 ⟩ uses several globals for efficiency or soundness. Δmaps each parameter instance 𝜃 ≡ [𝑋⇁

𝑉] to the state 𝑆 of the monitor checking its slice.U maps each encountered instance 𝜃 to the set
of instances seen so far that are more informative than 𝜃 . The range ofU is a set of sets, hence
the P𝑓 (powerset) notation. It is more efficient for D⟨𝑋 ⟩ to look up more informative instances
inU than to recompute that set per event. The integer timestamp is used in T to track when a
monitor𝑚𝑎 is created due to a creation event. Monitors that are later cloned from𝑚𝑎 get the same
timestamp as𝑚𝑎 in T . Lastly, disable(𝜃) maps instance 𝜃 to the last time a monitor for 𝜃 processed

405:8 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Algorithm 1 JavaMOP’s implicit-trace monitoring algorithm, called D⟨𝑋 ⟩ [26, 27].
Inputs: enable

𝑋
G : [E⇁P𝑓 (P𝑓 (𝑋))],𝑀 : a monitor template

Globals: Δ : [[𝑋⇁𝑉]⇁𝑆],U : [𝑋⇁𝑉] → P𝑓 ([𝑋⇁𝑉]), timestamp : integer, T : [[𝑋⇁𝑉]⇁ integer],
disable: [[𝑋⇁𝑉]⇁ integer]

Initialization:U(𝜃) ← ∅ for any 𝜃, timestamp← 0
1: procedure main(𝑒 ⟨𝜃⟩)
2: if Δ(𝜃) undefined then

3: createNewMonitorStates(𝑒 ⟨𝜃⟩)
4: if Δ(𝜃) undefined and 𝑒 is a creation event then defineNew(𝜃)
5: disable(𝜃) ← timestamp; timestamp← timestamp + 1
6: for all 𝜃 ′ ∈ {𝜃 } ∪ U(𝜃) s.t. Δ(𝜃 ′) defined do Δ(𝜃 ′) ← 𝜎 (Δ(𝜃 ′), 𝑒)
7: procedure createNewMonitorStates(𝑒 ⟨𝜃⟩)
8: for all 𝑋𝑒 ∈ enable𝑋G (𝑒) (in reversed topological order) do
9: if Dom(𝜃) ⊈ 𝑋𝑒 then

10: 𝜃𝑚 ← 𝜃 ′ s.t. 𝜃 ′ ⊏ 𝜃 and Dom(𝜃 ′) = Dom(𝜃) ∩ 𝑋𝑒

11: for all 𝜃 ′′ ∈ U(𝜃𝑚) ∪ {𝜃𝑚} s.t. Dom(𝜃 ′′) = 𝑋𝑒 do

12: if Δ(𝜃 ′′) defined and Δ(𝜃 ′′ ⊔ 𝜃) undefined then defineTo(𝜃 ′′ ⊔ 𝜃, 𝜃 ′′)
13: procedure defineNew(𝜃)
14: for all 𝜃 ′′ ⊏ 𝜃 do if Δ(𝜃 ′′) defined then return

15: Δ(𝜃) ← 𝜄; T (𝜃) ← timestamp; timestamp← timestamp + 1
16: for all 𝜃 ′′ ⊏ 𝜃 doU(𝜃 ′′) ← U(𝜃 ′′) ∪ {𝜃 }
17: procedure defineTo(𝜃, 𝜃 ′)
18: for all 𝜃 ′′ ⊑ 𝜃 s.t. 𝜃 ′′ @ 𝜃 ′ do if disable(𝜃 ′′) > T (𝜃 ′) or T (𝜃 ′′) < T (𝜃 ′) then return

19: Δ(𝜃) ← Δ(𝜃 ′); T (𝜃) ← T (𝜃 ′); for all 𝜃 ′′ ⊏ 𝜃 doU(𝜃 ′′) ← U(𝜃 ′′) ∪ {𝜃 }

an event. D⟨𝑋 ⟩ uses T and disable to ensure soundness of its enable-set optimization, namely that
instances for which D⟨𝑋 ⟩ skips monitor creation or cloning have non-violating slices.

The instrumented code and tests signal spec-related event 𝑒 ⟨𝜃⟩ by invoking D⟨𝑋 ⟩’s main proce-
dure (lines 1–6). There, line 2 first checks if there is no monitor for 𝜃 ’s trace slice in Δ. If so, line 3
invokes createNewMonitorStates to potentially clone monitors (using defineTo on lines 17–19) for
newly encountered instances that arise from combining 𝜃 with previously seen instances that are
less informative than 𝜃 . If Δ(𝜃) is still undefined after createNewMonitorStates returns and 𝑒 is
a creation event, then line 4 invokes defineNew, defined on lines 13–16, to assign a new monitor
in its initial state 𝜄 to Δ(𝜃). Finally, on line 6, the main procedure updates states of monitors for 𝜃
and all instances that are more informative than 𝜃 , i.e.,U(𝜃), according to 𝑒 and their transition
functions 𝜎 . A violation is reported if a monitor transitions to an error state.

To save space, we elide line-by-line explanation of D⟨𝑋 ⟩’s trace-slicing algorithm in createNewMo

nitorStates, defineNew, and defineTo. Those details and D⟨𝑋 ⟩’s correctness proofs are in [26, 27].
How TraceMOP Extends D⟨𝑋 ⟩ for Explicit-trace RV. Algorithm 2 shows at a high level how
TraceMOP extends D⟨𝑋 ⟩ to track traces. TraceMOP adds two new globals: a trie-like data struc-
ture (trie) and a map from parameter instances to trie nodes (B). Just before a program terminates,
TraceMOP algorithm’s main procedure usesB to traverse trie, producing all traces (lines 2–4). Oth-
erwise, the processEvent(𝑒 ⟨𝜃⟩, 𝑙) procedure is invoked, which differs from D⟨𝑋 ⟩.processEvent in
three ways: (i) it takes an additional argument 𝑙 for the line of code where 𝑒 ⟨𝜃⟩ is signaled; (ii) it uses
createNewMonitorStates

′ and defineNew′ instead of createNewMonitorStates and defineNew, re-
spectively; and (iii) it tracks traces in trie as sequences of (e, 𝑙) pairs (line 8). defineNew′ first invokes

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:9

Algorithm 2 TraceMOP’s explicit-trace monitoring algorithm [53], which extends D⟨𝑋 ⟩.
Inputs: same as D⟨𝑋 ⟩, Outputs: traces : set of unique traces
Globals: all globals in D⟨𝑋 ⟩, lock : a lock, trie : a trie-like data structure, B : [[𝑋⇁𝑉]⇁ trie node]
Initialization: D⟨𝑋 ⟩’s initialization, trie← a root trie node
1: procedure main(𝑒 ⟨𝜃⟩, 𝑙) :
2: if 𝑒 is termination signal then
3: traces← {}; for all 𝜃 ∈ Dom(B) do B(𝜃) .monitors← B(𝜃) .monitors + 1;
4: for all n ∈ trie.nodes s.t. |n.monitors| > 0 do { 𝜏 ← path(trie.root, n); traces← traces ∪ {𝜏}}; return
5: lock.acquire(); processEvent(𝑒 ⟨𝜃⟩, 𝑙); lock.release()
6: procedure processEvent(𝑒 ⟨𝜃⟩, 𝑙) :
7: // Same steps as in D⟨𝑋 ⟩.main(𝑒 ⟨𝜃⟩), but uses createNewMonitorStates

′ and defineNew
′ instead.

8: for all 𝜃 ′ ∈ {𝜃 } ∪ U(𝜃) s.t. Δ(𝜃 ′) defined do 𝑛 ← B(𝜃 ′) .next(𝑒 + 𝑙); B(𝜃 ′) ← 𝑛

9: procedure createNewMonitorStates
′(𝑒 ⟨𝜃⟩) :

10: // Same steps as in D⟨𝑋 ⟩.createNewMonitorStates(𝑒 ⟨𝜃⟩), but uses defineTo′ instead.
11: procedure defineNew′(𝜃) : D⟨𝑋 ⟩.defineNew(𝜃); B(𝜃) ← trie.root

12: procedure defineTo′(𝜃, 𝜃 ′) : D⟨𝑋 ⟩.defineTo(𝜃); B(𝜃) ← B(𝜃 ′)

Fig. 4. TraceMOP’s indexing tree

(left) and trie (right) for our sim-

ple running example.

D⟨𝑋 ⟩.defineNew, then updates B by pointing the monitor for
𝜃 ’s slice to trie’s root after creating a new monitor (line 11).
Similarly, defineTo′ first invokes D⟨𝑋 ⟩.defineTo, then updates B
when a monitor is cloned (line 12). By re-using all steps inD⟨𝑋 ⟩’s
processEvent, createNewMonitorStates, defineNew, and defineTo

procedures, TraceMOP merely adds trace-tracking features to
JavaMOP’s monitoring algorithm.

To speed up trace slicing, JavaMOP uses an indexing tree data
structure to look up monitors for parameter instances. The left
side of Fig. 4 (in orange) is a simplified view of that tree after
observing all five events (𝑒1, 𝑒2, 𝑒3, 𝑒4, and 𝑒5) in our abstract example above. The right side (in
purple) shows TraceMOP’s trie for tracking trace slices seen so far. Note that TraceMOP’s
indexing tree is only used for monitor look-up; it does not interact with trie.

3 Techniques

3.1 LazyMOP

We aim to make LazyMOP work at near JavaMOP speeds, while explicitly tracking traces, by
reducing the costs of repeatedly monitoring identical traces. LazyMOP’s design is shown in
Algorithm 3, which we call E⟨𝑋 ⟩. We next describe E⟨𝑋 ⟩ and its simple optimizations, and contrast
E⟨𝑋 ⟩ with D⟨𝑋 ⟩ and the algorithm in TraceMOP, the SoTA explicit-trace MOP-style RV technique.

LazyMOP takes the same inputs as D⟨𝑋 ⟩ and outputs all unique traces 𝑇 and (for convenience)
𝑇𝑣 , the subset of𝑇 that violates a spec. Globals T ,U, disable, and timestamp in E⟨𝑋 ⟩ are the same
as inD⟨𝑋 ⟩ and globals trie and lock in E⟨𝑋 ⟩ are the same as in TraceMOP (Algorithm 2). But, E⟨𝑋 ⟩
usesD instead ofD⟨𝑋 ⟩’s Δ.D maps each parameter instance 𝜃 ≡ [𝑋⇁𝑉] to a node 𝑛 in trie such
that nodes on the path from trie.root to 𝑛 represent 𝜃 ’s slice. This mapping of instances to trie nodes
is different from D⟨𝑋 ⟩, where Δ directly maps each 𝜃 to a monitor (state). In fact, E⟨𝑋 ⟩ cannot map
instances to monitors: it does not instantiate monitors at runtime and only instantiates monitors
for unique traces in trie just before the program terminates. Also, unlike TraceMOP, LazyMOP
does not use a separate map B from monitors to slices. Instead, LazyMOP directly retrieves slices
from D, reducing event processing time by avoiding an additional layer of map lookup.

405:10 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Algorithm 3 LazyMOP’s Monitoring Algorithm, E⟨𝑋 ⟩. Differences with D⟨𝑋 ⟩ are shown in green.
Inputs: same as D⟨𝑋 ⟩ ; Outputs: T : set of unique traces, Tv ⊆ T : unique traces that violate𝑀’s spec]
Globals: D : [[𝑋⇁𝑉]⇁ trie node], T : [[𝑋⇁𝑉]⇁ integer],U : [𝑋⇁𝑉] → P𝑓 ([𝑋⇁𝑉]),

disable: [[𝑋⇁𝑉]⇁ integer], timestamp : an integer, trie : a trie-like data structure, lock : a lock
Initialization:U(𝜃) ← ∅ for any 𝜃, timestamp← 0, T← {}, Tv ← {}, trie← root trie node

D(𝜃) .𝑚 ← 0 for any 𝜃
1: procedure main(𝑒 ⟨𝜃⟩, 𝑙)
2: if 𝑒 is termination signal then
3: for all slice in trie.slices do ⊲ only returns unique trace slices
4: 𝜏 ← decode(slice) ; T← T ∪ {𝜏} ; monitor← new(M) ; verdict← run(𝜏,monitor)
5: if verdict == violation then Tv ← Tv ∪ {𝜏}; return
6: if needsLock() then lock.acquire(); processEvent(𝑒 ⟨𝜃⟩, 𝑙); if needsUnLock() then lock.release()
7: procedure processEvent(𝑒 ⟨𝜃⟩, 𝑙)
8: if D(𝜃) undefined then

9: addSlices(𝑒 ⟨𝜃⟩)
10: if D(𝜃) undefined and 𝑒 is a creation event then defineNew(𝜃)
11: disable(𝜃) ← timestamp; timestamp← timestamp + 1
12: for all 𝜃 ′ ∈ {𝜃 } ∪ U(𝜃) s.t. D(𝜃 ′) defined do D(𝜃 ′) ← D(𝜃 ′).advance(encode(𝑒, 𝑙));
13: procedure addSlices(𝑒 ⟨𝜃⟩)
14: for all 𝑋𝑒 ∈ enable𝑋G (𝑒) (in reversed topological order) do
15: if Dom(𝜃) ⊈ 𝑋𝑒 then

16: 𝜃𝑚 ← 𝜃 ′ s.t. 𝜃 ′ ⊏ 𝜃 and Dom(𝜃 ′) = Dom(𝜃) ∩ 𝑋𝑒

17: for all 𝜃 ′′ ∈ U(𝜃𝑚) ∪ {𝜃𝑚} s.t. Dom(𝜃 ′′) = 𝑋𝑒 do

18: if D(𝜃 ′′) defined and D(𝜃 ′′ ⊔ 𝜃) undefined then defineTo(𝜃 ′′ ⊔ 𝜃, 𝜃 ′′)
19: procedure defineNew(𝜃)
20: for all 𝜃 ′′ ⊏ 𝜃 do if D(𝜃 ′′) defined then return

21: D(𝜃) ← trie.root; T (𝜃) ← timestamp; timestamp← timestamp + 1; D(𝜃) .𝑚 ← D(𝜃).𝑚 + 1
22: for all 𝜃 ′′ ⊏ 𝜃 doU(𝜃 ′′) ← U(𝜃 ′′) ∪ {𝜃 }
23: procedure defineTo(𝜃, 𝜃 ′)
24: for all 𝜃 ′′ ⊑ 𝜃 s.t. 𝜃 ′′ @ 𝜃 ′ do if disable(𝜃 ′′) > T (𝜃 ′) or T (𝜃 ′′) < T (𝜃 ′) then return

25: D(𝜃) ← D(𝜃 ′); T (𝜃) ← T (𝜃 ′); for all 𝜃 ′′ ⊏ 𝜃 doU(𝜃 ′′) ← U(𝜃 ′′) ∪ {𝜃 }; D(𝜃) .𝑚 ← D(𝜃).𝑚 + 1

The main procedure (lines 1–6) in Algorithm 3 is the entry point of E⟨𝑋 ⟩. A special end event that
is not related to any spec—e.g., a JVM shutdown hook in Java—is a termination signal indicating
that program execution is about to terminate. On line 6, E⟨𝑋 ⟩ calls processEvent(𝑒 ⟨𝜃⟩) on each
spec-related event 𝑒 to perform trace slicing and append 𝑒 to appropriate slices based on 𝜃 .
Lazy monitoring. Explicitly tracking unique traces without monitoring them against specs while a
program runs, and only monitoring them just before program termination is a simple optimization
for online RV of tests that is novel to LazyMOP. Specifically, unlike in D⟨𝑋 ⟩.processEvent which
TraceMOP inherits, E⟨𝑋 ⟩.processEvent merely stores unique traces; it does not eagerly monitor
events as they are signaled. Rather, monitoring of unique traces is lazily deferred until the end

event arrives, when lines 2–5 are run. Line 4 does four things: it (i) decodes each unique trace slice
in trie—for fast trace store accesses, LazyMOP encodes each event and its location as an integer
on line 12—to obtain trace 𝜏 ; (ii) adds 𝜏 to 𝑇 , the set of unique traces to return; (iii) instantiates a
new monitor𝑚; and (iv) checks if𝑚 accepts 𝜏 . On line 5, if 𝜏 caused𝑚 to transition to a violating
state, then 𝜏 is added to 𝑇𝑣 , the set of violating traces to return. The decode procedure (not shown)
reverses the effect of encode: it splits an integer into two parts, one representing the event’s name

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:11

and the other is a unique integer ID representing the event’s location. The decode procedure also
maps that ID back to a line of code in the monitored program.
On-demand Synchronization. The if statements before and after the call to E⟨𝑋 ⟩.processEvent on
line 6 show LazyMOP’s on-demand synchronization, another simple optimization that is novel for
explicit-trace RV. In TraceMOP, eager monitoring of signaled events requires lock acquisition and
release on the trace store before and after processing each event, respectively (line 5 in Algorithm 2).
But, on-demand synchronization means LazyMOP only starts acquiring and releasing locks on its
trace store after seeing evidence that the program is multi-threaded (§3.1.2 explains how LazyMOP
finds such evidence). After that, the if conditions on line 6 will subsequently always return true.
Event Encoding and Decoding. One reason TraceMOP does not scale well is that it represents event
names and locations as strings in its trace store. Doing so makes trace store accesses slow because
it takes O(|event name| + |location string|) time to check if a trie node contains an event name
and location. Since TraceMOP traverses its trie once per signaled event, this cost becomes quite
significant in projects where RV signals millions, or even billions of events. LazyMOP introduces
event encoding and decoding as simple optimizations to allow checking if a trie node contains an
event in O(1) time, thereby speeding up trace store accesses. On line 12, encode returns a unique
integer per unique (e, loc) pair, where e is an event name (e.g., init for BAOS) and loc is the line
of code that signaled the event (e.g., loc for line 4 in Fig 2 is a fresh integer, say 99, that maps
to cc.mallet.types.tests.TestSerializable:TestSerializable.java:4). Dually, decode obtains (e,
loc) pairs from an integer encoding. For example, decoding 1585 yields the event name 1 (from the
last four bits, 0001), indicating an init event, and the location ID 99 (from the first 28 bits).

The encode procedure (not shown) first assigns to each unique location a unique integer ID, and
then combines that ID with the event name. Internally, event names in each spec are mapped at
instrumentation time to unique integers (e.g., init for BAOS is 1, write is 2, etc.). Retrieving the
full location (package name, class name, plus line number) per event at runtime is costly. LazyMOP
amortizes this cost by retrieving the full location per event location only once and mapping each full
location to a unique integer ID in a data structure (elided in Algorithm 3 for simplicity). So, obtaining
the location ID of subsequent events from the same location is a fast lookup. Also, LazyMOP uses
this ID-to-full-location mapping in decode to obtain the location of each event in trie.

The algorithmic simplicity of these three LazyMOP optimizations belies the complexity of their
implementations. For example, efficient implementation of event encoding and decoding required
us to modify complex code in the AspectJ compiler that LazyMOP (and JavaMOP and TraceMOP)
use for instrumentation. §3.1.2 provides more details on our LazyMOP implementation.
Other ways E⟨𝑋 ⟩ differs from D⟨𝑋 ⟩ and TraceMOP. The processEvent, addSlices, defineNew, and
defineTo procedures in E⟨𝑋 ⟩ only differ from their counterparts in D⟨𝑋 ⟩ in how they use and
updateD (a map from each parameter instance to the node representing the current end of its trace
slice) instead of Δ (a map from each parameter instance to the state of the monitor checking its trace
slice). We highlight these differences in green in Algorithm 3. On line 12 of processEvent, whereas
D⟨𝑋 ⟩ and TraceMOP’s algorithm call the transition function 𝜎 of the monitor for 𝜃 ′ to check 𝑒 ,
i.e., 𝜎 (Δ(𝜃 ′), 𝑒), LazyMOP’s E⟨𝑋 ⟩ advances the slice 𝜏 for 𝜃 ′ by the encoded event. To advance 𝜏 ,
procedure advance (not shown) either adds a new node to trie or updates trie to reflect that the
slice for 𝜃 ′ is now 𝜏 · 𝑒 . In either case, E⟨𝑋 ⟩ increments the count of parameter instances whose
slices is 𝜏 · 𝑒 by 1, and decrements the count of parameter instances whose slices is 𝜏 by 1. On the
right side of Fig 4, each trie node is associated with a variable m that tracks the number of parameter
instances whose slices end at that node. Just before the program terminates, LazyMOP uses these
counts to determine the frequency of each unique trace. For example, m = 2 if two instances have the

405:12 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

same slice. Procedure addSlices in E⟨𝑋 ⟩ is almost identical to createNewMonitorStates in D⟨𝑋 ⟩;
the former differs from the latter in its straightforward use of D instead of Δ.
As in D⟨𝑋 ⟩ (Algorithm 1), E⟨𝑋 ⟩’s defineNew is invoked when a new parameter instance 𝜃

is encountered for which no previous less informative instance exists that can be the basis of
monitoring 𝜃 ’s slice. Differently from D⟨𝑋 ⟩, line 15 in E⟨𝑋 ⟩.defineNew maps 𝜃 to trie.root and
increments D(𝜃).𝑚 by 1, indicating that a new empty slice was created. However, if a previous
less informative instance 𝜃 ′ already exists in Dom(B), then instead of cloning monitors in defineTo

as D⟨𝑋 ⟩ does, E⟨𝑋 ⟩ copies the slice of 𝜃 ′, maps 𝜃 to that copied slice, and increments D(𝜃).𝑚 by 1.
That way, by the time E⟨𝑋 ⟩.processEvent reaches line 12, the slice for 𝜃 is advanced by 𝑒 in trie.

Two important differences between LazyMOP and TraceMOP are hard to show in Algorithm 3.
First, to retrieve slices for parameter instances from D, LazyMOP uses a different indexing tree
that integrates closely with trie. That is, unlike TraceMOP, which uses an intermediate map B
and keeps the indexing tree separate from trie, LazyMOP’s indexing tree interacts directly with
trie to speed up event processing. Each node in the indexing tree points directly to a node in trie.
So, when a new event occurs, LazyMOP can quickly locate and update trie using only the new
event’s parameter instance. In contrast, TraceMOP first retrieves the monitor for that parameter
instance and then uses that monitor to find and update trie. Second, whereas TraceMOP uses
one trie to track unique traces for all specs, LazyMOP uses one trie per spec. Using a separate
trie per spec has two benefits: it (i) reduces the size of each trie, speeding up trie operations, and
(ii) allows LazyMOP to traverse the trie and monitor unique traces in parallel.

3.1.1 LazyMOP’s Correctness. Comparing processEvent, createNewMonitorStates, defineNew, and
defineTo in Algorithms 1 with counterparts in Algorithm 3 shows that LazyMOP’s E⟨𝑋 ⟩ uses the
same event handling and trace slicing steps as D⟨𝑋 ⟩. So, D⟨𝑋 ⟩’s proofs of correctness, which only
apply to these steps, also apply to E⟨𝑋 ⟩. The correctness of trie advancement and lazy monitoring—
the two ways E⟨𝑋 ⟩ differs from D⟨𝑋 ⟩—is straightforward. A proof by induction on the length of
the path from trie.root to the node in trie that parameter instance 𝜃 points to before processing
𝑒 shows the correctness of trie advancement. The correctness of lazy monitoring follows from the
fact that we use well-known methods for checking if an automaton accepts a word.

3.1.2 Implementation. LazyMOP has a Code Generator and a Runtime Verifier. The Code Generator
only runs once offline to produce the Runtime Verifier from a set of specs. The Runtime Verifier is a
Java agent [94] that monitors executions against specs; it is (i) easily integrated into any Java project;
and (ii) reusable across projects. To produce the agent, Code Generator uses AspectJ [73] to generate
instrumentation code from spec files. Also, from each spec, Code Generator uses JavaParser [66] to
generate a manager class that connects AspectJ code to LazyMOP and a monitor class.
Event encoding. At runtime, the agent first instruments the code under test (CUT) and tests based
on the specs, then transforms the instrumented code to represent the full location of each instru-
mentation site (e.g., line 6 in Fig 2) as a unique integer ID. To do so, LazyMOP fetches the location
object per instrumented event from AspectJ, then encodes the event’s name (e.g., tobytearray in
Fig 1) and full location (e.g., cc.mallet.types.tests.TestSerializable:TestSerializable.java:6
for tobytearray in Fig 2).
Lazy monitoring. LazyMOP monitors unique traces in a shutdown hook, just before JVM shutdown.
There, for each unique trace, LazyMOP decodes the integer IDs to obtain event names and locations.
By using one trie per spec, LazyMOP knows the spec for each decoded trace. Next, LazyMOP
creates a new monitor object per decoded trace and checks if it accepts the sequence of event names
in that trace. Lastly, LazyMOP persists decoded traces and those that violate specs to disk.

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:13

On-demand synchronization. LazyMOP starts synchronizing trace store accesses only after finding
that the CUT uses multiple threads. LazyMOP detects the start of threads by listening for method
calls related to concurrency-related Java APIs that create threads, e.g., Thread, ExecutorService,
ThreadPoolExecutor. (Our artifact contains a full list of methods that LazyMOP listens for.)

3.2 LazyMOP
𝑒

LazyMOP𝑒 is an initial step towards the first of six applications (A1-A6 in §1) that LazyMOP can
enable. LazyMOP aims to speed up explicit-trace RV on a program version by monitoring fewer
identical traces, but LazyMOP𝑒 aims to do so across multiple versions by generating fewer identical
traces. LazyMOP𝑒 uses traces and code changes to perform targeted disabling of monitoring during
CI if all events in repeatedly monitored identical traces (Definition 1) are in a method.
LazyMOP𝑒 is motivated by findings from a formative study that we perform in this paper to

better understand how repeatedly monitored identical traces commonly manifest in real-world
open-source projects. So, we first report on that study in §3.2.1 before describing LazyMOP𝑒 ’s
design in §3.2.2. We introduce this definition for ease of presentation in the rest of this paper:
Definition 4. An idempotently monitored method, or IMM is one from which at least one event in
a repeatedly monitored identical trace is signaled. A single-IMM identical trace has events from
only one IMM, e.g., 𝜏1 and 𝜏2 in §2 with only BAOS events from cloneViaSerialization in Fig 2. A
multi-IMM identical trace has events that are signaled from multiple IMMs.

3.2.1 Formative Study. We do an in-depth analysis of traces and IMMs in 1,432 projects from [51]
where JavaMOP and TraceMOP work. Our appendix has more study details (project selection and
characteristics, analysis, results, etc.). To save space, here we only answer our six study questions:
1. What proportion of monitored methods are IMMs? On average per project, 76.0 of 181.7
monitored methods (with at least one signaled event) are IMMs. The max (min) monitored-method
count is 3,942 (1). In 473 projects, the ratio of IMMs to monitored methods is 50% or more.
2. What proportion of all traces have events in IMMs? Summed across all 1,432 projects, 90.4%
of all 7,424,704,750 (non-unique) traces have events in IMMs. Only 9.6% of those traces have no
event in an IMM and over 50% of all traces in 1,245 projects have events in an IMM.
3. How frequent are single- vs. multi-IMM identical traces? Across all projects, the median
ratio of single-IMM traces to all identical traces is 97.2%; the mean is 88.7%. 1,352 projects have
over 50% single-IMM identical traces like 𝜏1 and 𝜏2 in §2; more than 95% of identical traces in 850
projects are single-IMM. So, we initially design LazyMOP𝑒 to target single-IMM identical traces,
which do not require inter-procedural analysis. Future work can tackle multi-IMM identical traces.
4. How many specs are typically involved in IMMs? 73.6% of IMMs involve multiple specs.
The spec count per IMM is less than five in 66.4% of cases, i.e., few specs are often involved. But,
one IMM involves 12 specs. So, faster RV by exploiting IMMs requires handling multiple specs per
IMM. But, a technique (e.g. [98]) that uses heavyweight per-spec static analysis to exploit IMMs is
unlikely to scale well in CI: that costly analysis must be repeated per spec and per version.
5. Where are IMMs located? 69.7%, 6.3%, and 23.9% of IMMs are in 3rd-party libraries, the CUT,
and tests, respectively. So, bytecode-level analysis is needed to exploit IMMs in libraries.
6. How often do methods that produce single-IMM identical traces depend on inputs

or outputs of other methods? Across all projects, 95,107 out of 108,815 IMMs (87.4%) do not
depend on the inputs or outputs of other methods. So, LazyMOP𝑒 currently targets IMMs that do
not depend on inputs or outputs of other methods. Future work can target the others.

3.2.2 Design. The challenge in LazyMOP𝑒 is how to know ahead of time if a yet-to-be-generated
trace will be identical to a previously seen trace. LazyMOP𝑒 addresses this challenge in the CI

405:14 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Algorithm 4 LazyMOP𝑒 ’s Algorithm
Inputs: E⟨𝑋 ⟩’s inputs,𝑚 : method in version 𝑣2,𝑚′ :𝑚 in old version 𝑣1, S : specs, Tv1 : 𝑣1’s unique traces
Outputs: T : unique traces in 𝑣2, Tv: ⊆ traces, unique traces that violate𝑀’s spec in 𝑣2
1: procedure premain(𝑚,𝑚′, S, 𝑇𝑣1) : ⊲ invoked once at instrumentation time
2: if 𝑚 ≠𝑚′ or 𝑚 is affected by the change then return ⊲ skip changed or affected methods
3: for all 𝑠 in S do

4: Tm ← {}; for all 𝜏 ∈ 𝑇𝑣1 s.t. 𝜏 is for 𝑠 and ∀e ∈ 𝜏, e.loc is in 𝑚 do Tm ← Tm ∪ {𝜏}
5: Ts ← {}; for all 𝜏 ∈ 𝑇𝑣1 s.t. 𝜏 is for 𝑠 and ∃e ∈ 𝜏, e.loc is in 𝑚 do Ts ← Ts ∪ {𝜏}
6: if |Tm | == |Ts | and |Tm | == 1 then𝑚 ← transform(m, s)
7: if cannotViolate(𝑚, 𝑠,𝑇𝑣1) then𝑚 ← transform

′ (m, s) ⊲ compiler guarantees𝑚 cannot violate 𝑠
8: procedure main(𝑒 ⟨𝜃⟩, 𝑙) : ⊲ invoked everytime an event for 𝑠 is signaled at runtime
9: E⟨𝑋 ⟩.main(𝑒 ⟨𝜃⟩, 𝑙)

context by first obtaining relationships among traces and IMMs in version 𝑣1. Then, in future version
𝑣2, LazyMOP𝑒 identifies all (𝑚, 𝑠) pairs, where𝑚 is an IMM that is not affected by code changes, 𝑠
is a spec, and all traces for 𝑠 in𝑚 were identical and had only events from𝑚 in 𝑣1. Next, LazyMOP𝑒
transforms each𝑚 to generate its trace for 𝑠 only once in 𝑣2. If𝑚 changes to𝑚′ or if𝑚 is unchanged
but is affected by the changes, LazyMOP𝑒 should re-monitor all traces in un-transformed𝑚′ (or
𝑚) in 𝑣2. We have so far only empirically evaluated LazyMOP𝑒 ’s safety—ability to find all new
violations after a code change. §3.2.3 discusses LazyMOP𝑒 ’s correctness and safety.

Algorithm 4 shows how LazyMOP𝑒 works. Lines 1–7 show premain, which runs once at instru-
mentation time, before monitoring starts; it aims to transform only IMMs that generate single-IMM
repeatedly monitored identical traces to only generate one such trace at runtime. Line 2 finds IMMs
that should not be transformed as those that changed (𝑚 ≠𝑚′) or are affected by changes. Line 4
checks if each unique trace 𝜏 from𝑚 in 𝑣1 was generated from 𝑠 and contains only events from𝑚.
If so, 𝜏 is added to 𝑇𝑚 . Line 5 adds 𝜏 to 𝑇𝑠 if any event (instead of all on line 4) in 𝜏 is from𝑚.

Next, LazyMOP𝑒 uses 𝑇𝑚 and 𝑇𝑠 to decide if method𝑚 should be transformed. Since LazyMOP𝑒
only aims to generate fewer single-IMM identical traces, it requires |𝑇𝑠 | == |𝑇𝑚 |, i.e., both sets of
traces for 𝑠 only have events in method𝑚. Also, if |𝑇𝑚 | = 1, then𝑚 produces only one repeatedly
monitored identical trace. So, LazyMOP𝑒 only transforms𝑚 if line 6 ensures that𝑚 only generates
single-IMM repeatedly monitored identical traces for 𝑠 . The goal of transform is to cause 𝑠 to
be monitored in 𝑚 only once, during 𝑚’s first invocation, and to skip monitoring 𝑠 during all
subsequent invocations of𝑚. (§3.2.4 describes how we implement transform.) Even if the condition
on line 6 is not met, LazyMOP𝑒 can still reduce wasted monitoring by transforming𝑚 if all (possibly
un-identical) traces that are generated from𝑚 are guaranteed by the compiler to not violate 𝑠 .
The cannotViolate procedure on line 7, whose current implementation is discussed in §3.2.4,

returns whether the compiler can guarantee that traces generated in some method𝑚 cannot violate
spec 𝑠 . For example, specs that monitor correct usage of Iterator cannot be violated if they are
only used in code that the Java compiler generates while desugaring a foreach loop to a while loop.
If cannotViolate returns true, LazyMOP𝑒 uses transform′ to remove all instrumentation related
to spec 𝑠 , such that method𝑚 does not produce any events from 𝑠 . This transform′ differs from
transform, where 𝑠 is still monitored in𝑚 during the first invocation. Our goal is to monitor the
CUT and third-party library code, so LazyMOP𝑒 does not monitor the standard Java library: the
specs we use check whether developer written code follows correct usage protocols of JDK APIs,
and monitoring the standard library would add unnecessary overhead with no benefit to developers.

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:15

Fig. 5. The steps in LazyMOP
𝑒
’s workflow.

3.2.3 LazyMOP
𝑒
’s Correctness and Safety. We discuss the correctness of Algorithm 4 theoretically

in terms of its safety—ability to find all new violations after a code change—and trace preservation—
ability to find all traces that LazyMOP finds after a code change.
Safety. Assuming 𝑇𝑣1 contains all unique traces in 𝑣1 and tests are deterministic, only lines 2, 6,
and 7 in Algorithm 4 can affect LazyMOP𝑒 ’s ability to find all new violations that LazyMOP finds
after code changes. So, we discuss why none of these lines make LazyMOP𝑒 unsafe in theory.
1. If𝑚 changed or if it can behave differently because it transitively depends on input or output
data from another method that changed, then line 2 is sufficient to ensure that LazyMOP𝑒 does not
apply any transformation and that it monitors𝑚 in the same way that LazyMOP does. In practice,
this claim about line 2 assumes the availability of sound inter-procedural change-impact analysis
and may not hold for multi-IMM identical traces, which we do not tackle in this paper.
2. Since line 6 ensures that all traces for 𝑠 in𝑚 are single-IMM identical traces, transform preserves
any violation found from the only trace of 𝑠 generated from𝑚 after the transformation on line 6.
3. Since cannotViolate ensures that transform′ is only ever invoked if a compiler guarantees that
𝑚 cannot violate 𝑠 , the transformation on line 7 cannot lead to missing a violation.
Trace Preservation. We again discuss the impact of lines 2, 6, and 7 in Algorithm 4 on LazyMOP𝑒 ’s
ability to find all traces that LazyMOP finds. Trace preservation subsumes safety as a criterion for
correctness: checking all unique traces ensures finding all violations, but not the other way around.
1. Line 2 ensures that if𝑚 changed or is affected by a change, then LazyMOP𝑒 monitors𝑚, and
finds the same traces in𝑚, as LazyMOP would.
2. On line 6, transform only changes the frequency of observing a single-IMM identical trace for 𝑠
in𝑚 from 𝑛 ≥ 1 to 1. But, for the specs we check, changes in frequency do not affect bug finding.
3. On line 7, transform’ causes LazyMOP𝑒 to miss unique traces for 𝑠 in𝑚 that LazyMOP finds.
But, such missed traces cannot violate 𝑠 and, for the specs we check, do not help find bugs.

3.2.4 Implementation. Figure 5 shows the main steps in our LazyMOP𝑒 implementation. Given
specs, old version 𝑣1, new version 𝑣2, and unique traces from 𝑣1, LazyMOP𝑒 outputs violations,
unchanged traces, and new traces. We next explain each LazyMOP𝑒 step:
1 Diff Analyzer compares the bytecode in 𝑣1 and 𝑣2 after “cleaning” all debug-related information
so that classes where only, e.g., white space and comments, changed are ignored. If class𝐶’s cleaned
bytecode in 𝑣2 differs from 𝑣1’s, or if 𝐶 is new in 𝑣2, 𝐶 is marked as changed.
2 IMM Indentifier finds the set of unchanged methods that produce single-IMM repeatedly
monitored identical traces in 𝑣2 using, specs, traces from 𝑣1, and changed classes from 1 . Methods
in changed classes that produced single-IMM identical traces in 𝑣1 are fully re-monitored.
3 IMM Tranformer transforms unchanged IMMs from 2 before monitoring 𝑣2. For each such
IMM, all specs that do not produce single-IMM identical traces are first identified. Then, the
bytecode of the class containing the IMM is transformed to add (i) a differently-named copy of the
IMM; and (ii) code to the original IMM that dispatches second and subsequent calls of the original
IMM to the copy. Next, the original IMM is instrumented with all related specs, but the copy is
only partially instrumented with specs for which that IMM does not produce single-IMM identical
traces. We describe an example of a transformed IMM in the Appendix.

405:16 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

4 De-Instrumenter removes all instrumentation code from Java’s foreach loops [65] for specs
with only Iterator parameters, iff. those parameters are only used in the loop body. For example,
consider the Iterator_HasNext spec: iterator.next() must be preceded by iterator.hasNext() on
the same iterator, to avoid fetching non-existent elements. The Java compiler desugars such loops
into while loops that use Iterators in ways that cannot violate such specs. So, de-instrumenting
such loops will cause LazyMOP𝑒 to miss unique traces, but it will not miss violations. Our artifact
contains a list of all nine specs that De-Instrumenter supports.
5 LazyMOP𝑒 ’s agent (i) instruments transformed IMMs so that at runtime, after the first check,
calls to the original IMMs are dispatched to the copies from 3 ; (ii) monitors the instrumented code
and reports any violations; and (iii) uses changed classes from 1 to distinguish among traces from
changed and unchanged classes; the former will be used as LazyMOP𝑒 inputs in a future version.

We implement LazyMOP𝑒 as a Maven plugin; it first runs between compilation and test execution
to find changed classes using the same bytecode-level (and bytecode-cleaning) change detector
used in several RTS tools [46, 47, 81, 83]. We implement IMM Tranformer in ASM [7]; it works
on binaries and processes each class thrice: (i) map method names to method descriptors; (ii) copy
IMMs and rename copies; and (iii) modify original IMMs to invoke copies after the first call.
Scope and Limitation. Fast and sound change-impact analysis would be needed if IMMs in
unchanged classes become non-IMMs after changes because a dependent IMM depends on input
or output of other methods. LazyMOP𝑒 does not tackle dependent IMMs, but it can check for
dependence by analyzing if the same traces result from multiple calls to an IMM. No independent
IMM later became dependent in our evaluation. LazyMOP𝑒 ’s De-Instrumenter only optimizes
dependent IMMs if compiler-generated code cannot violate a spec.

4 Evaluation

Research Questions. We organize our LazyMOP and LazyMOP𝑒 evaluation around five questions:
RQ1. How does LazyMOP compare with TraceMOP and JavaMOP in terms of time and memory

overhead on single versions of open-source projects?
RQ2. How much does each new optimization in LazyMOP (lazy monitoring, event encoding, and

on-demand synchronization) contribute to its efficiency?
RQ3. How do LazyMOP and LazyMOP𝑒 compare with JavaMOP in terms of runtime overheads

across multiple versions of evolving open-source projects?
RQ4. Can LazyMOP𝑒 speed up SoTA evolution-aware RV techniques in eMOP [82, 131]?
RQ5. How safe is LazyMOP vs. TraceMOP, and how safe is LazyMOP𝑒 vs. eMOP?
RQ1 compares LazyMOP’s efficiency with those of explicit-trace TraceMOP and implicit-trace

JavaMOP on single versions. RQ2 is an ablation study on the contribution of each optimization
to LazyMOP’s efficiency. RQ3 concerns LazyMOP𝑒 ’s efficiency during evolution, vs. evolution-
unaware LazyMOP and JavaMOP. RQ4 evaluates combinations of LazyMOP𝑒 with two evolution-
aware techniques in eMOP that aim to re-monitor only specs related to code affected by changes.
Lastly, RQ5 checks (i) if LazyMOP preserves traces and violations that JavaMOP and TraceMOP
find; and (ii) LazyMOP𝑒 ’s and eMOP’s safety, i.e. the ability to find new violations after a change.
Evaluation Subjects. We start our project selection by investigating if there are characteristics that
indicate a project is a good candidate for evaluating the optimizations in LazyMOP and LazyMOP𝑒 .
To do so, we check for correlation between the ratio of TraceMOP time to LazyMOP time and
various program characteristics, using all 1,432 projects from [51] where all tests still pass with
JavaMOP. Like in [51], Table 1 shows that no strong correlation is observed for any characteristic,
with or without outliers. There, the mutation score (mut. score) is computed using the 11 default
operators in PIT [97], and coverage is computed using JaCoCo [64]. Notably, we find only a weak

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:17

Table 1. Pearson’s correlation coefficients for LazyMOP time (s) over TraceMOP time (s) vs. several program

characteristics: no. of test methods (#tests), test time w/o RV in seconds (t), relative JavaMOP overhead

(𝑡 rv/t), absolute JavaMOP overhead (s, 𝑡 rv−t), lines of code (SLOC), % statement coverage (𝑐𝑜𝑣𝑠), % branch

coverage (𝑐𝑜𝑣𝑏), no. of GitHub commits (#SHAs), years since 1st commit (age), no. of stars (#8), max. total

cyclomatic complexity (CyComp.), mutation score (mut. score), and ratio of trace repetitiveness (Rep).

#tests t 𝑡 rv/t 𝑡 rv−t SLOC 𝑐𝑜𝑣𝑠 𝑐𝑜𝑣𝑏 #SHAs age #8 CyComp. mut. score Rep.

Pearson’s r (with outliers) 0.087 0.143 0.32 0.32 0.091 0.114 0.119 0.119 0.006 0.048 0.032 -0.009 0.231

Pearson’s r (without outliers) 0.134 0.271 0.386 0.386 0.115 0.144 0.131 0.074 0.014 0.012 0.078 0.011 0.335

Table 2. Summary statistics on 179 projects that we evaluate. Table 1’s caption describes column headers.

#tests t 𝑡 rv/t 𝑡 rv−t SLOC 𝑐𝑜𝑣𝑠 𝑐𝑜𝑣𝑏 #SHAs age #8 CyComp. mut. score Rep.

Mean 349.6 24.5 12.3 209.3 13,424.3 64.2 57.2 482.8 10.7 298.5 155.7 76.2 97.8
Med 60 5.9 8.2 47.8 4,658 68.4 59.0 147 10 48 81.5 79.0 99.9
Min 1 1.5 1.1 3.2 93 0.1 0.0 3 3 0 6 21 41.3
Max 17,874 1,449.7 107.3 17,223.0 2.0×105 99.5 100.0 4,860 27 11,993 1,560 100 100.0
Sum 62,581 4,388.4 n/a n/a 2.4×106 n/a n/a n/a n/a 53,431 n/a n/a n/a

positive correlation with the characteristic Rep., the amount of repeatedly monitored identical
traces (Rep. = 100 * (number of traces − number of unique traces) / number of traces).
Given the lack of strong correlation, we split the 1,432 projects in Table 1 into three groups:

(i) 1,233 projects where LazyMOP is less than five seconds faster than TraceMOP (912 projects) or
TraceMOP is less than five seconds faster than LazyMOP (321 projects)—within this threshold, the
choice of LazyMOP or TraceMOP is unlikely to matter in practice; (ii) 20 projects with average
LazyMOP time of 55.7 seconds where TraceMOP is more than five seconds and at least 10% faster
than LazyMOP, i.e., LazyMOP’s optimizations makes explicit-trace RV observably slower than
TraceMOP for these few projects; and (iii) 179 projects where LazyMOP is more than five seconds
and at least 10% faster than TraceMOP. Our evaluation uses the 179 projects in the third group,
whose summary statistics are in Table 2; column headers are described in Table 1 and “n/a” are
meaningless sums. (Our appendix summarizes the other two project groups.) The maximum value
of Rep. shows up as 100.0% due to rounding; it is 99.99995%. The minimum test count is one; we keep
that project since there is no strong correlation with #tests in Table 1. Mutation score (mut. score)
is the ratio of killed to covered mutants. LazyMOP is not helpful when there are few repeatedly
monitored identical traces. But trace repetitiveness (Rep.) is high for many of these projects.
Specs. We use all 84 specs in JavaMOP whose formalism (e.g., LTL, ERE, FSM) compile into FSMs.
Table 3. Summary of the 84 specs.

types methods formalism #

Avg 1.3 3.7 ERE 69
Med 1 3 FSM 13
Min 1 1 LTL 2
Max 4 15
Sum 113 310 84

Table 3 summarizes these 84 specs. There, “types” is the number
of types of parameters per spec, “methods” is the number of
methods each spec concerns, “formalism” is the logic used, and
“#” is the number of specs in each formalism. 62, 16, 5, and 1 specs
have one, two, three, and four parameter types, respectively.
Of 84 specs, four concern only one method, 23 concern two

methods, 23 concern three methods, 11 concern four methods, seven concern five methods, 15
concern more than five but fewer than ten methods, and one concerns 15 methods.
Baselines. We compare the proposed techniques with JavaMOP, TraceMOP, and two techniques
from eMOP: psc1 and pscℓ3 . §2 described JavaMOP and TraceMOP. We use the JavaMOP imple-
mentation in TraceMOP [125], which recently updated and refactored JavaMOP to support many
modern Java features [53]. We choose JavaMOP because it was used in all prior work on RV of
tests and it is the only RV tool that was shown to scale for simultaneously monitoring scores of
the kind of specs that we use in thousands of open-source projects [51, 52, 67, 79, 82, 92]. Also,
TraceMOP is the only online explicit-trace MOP-style RV technique today. We compare LazyMOP
and LazyMOP𝑒 with eMOP, the only evolution-aware MOP technique and tool today that targets

405:18 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Fig. 7. Ratio of TraceMOP time (top, for 161 projects) and LazyMOP time (bottom, for 179 projects) to

JavaMOP time (the red line).

the reduction of monitoring costs. iMOP [52] is also evolution-aware, but it targets reduction of
instrumentation costs [52], which is complementary but out of scope in this paper.

We use two baselines from eMOP: psc1 and ps
cℓ
3 ; they are, respectively, the fastest safe-by-design

and fastest unsafe-by-design techniques among the 12 that speed up RV by re-monitoring only
a subset of specs affected by code changes. Safety means finding all violations that are new after
a change, assuming deterministic tests and within static analysis limitations [82]. psc1 uses a
conservative change-impact analysis and re-monitors specs with events in (i) changed classes 𝛿 ;
(ii) dependents of 𝛿 ; (iii) dependees of 𝛿 , i.e., unchanged classes that are not in (i) and (ii) but which
can generate new events in the new version if 𝛿 now passes new data to them; and (iv) dependees
of dependents of 𝛿 . These four sets can be a large portion of projects’ classes, so psc1 tends to

Fig. 6. eMOP example.

re-monitor a large fraction of specs and it is often slower than pscℓ3 , which is
designed to trade safety for efficiency. pscℓ3 uses a less conservative analysis
and only re-monitors specs with events in 𝛿 and dependents of 𝛿 . pscℓ3 also
does not monitor third-party libraries.

Fig 6 shows how psc1 and ps
cℓ
3 work. There, circles A, B, C, and D are CUT

classes; L is a library class; and T is a test class. Rectangles S1–S4 are specs.
Solid arrows from class 𝑥 to class 𝑦 means 𝑥 extends or uses 𝑦. Dashed
arrows from class 𝑥 to spec 𝑍 means 𝑥 may generate 𝑍 events. Suppose
only A changed in the new version (green in Fig 6), psc1 finds classes A, B, C, L, and T as impacted.
So, psc1 re-monitors only S1–S3; under the stated assumptions, new S4 events cannot be generated
in these impacted classes. But, pscℓ3 finds only A, B, and T as impacted: L is a library class and a
dependee of 𝛿 , and C is a dependee of a dependent of 𝛿 . So, pscℓ3 re-monitors only S2 in the new
version. We use the psc1 and pscℓ3 implementations in Yorihiro et al.’s eMOP Maven plugin [131].
Experimental Setup. We write scripts to automate our experiments, all of which use RV to only
monitor passing tests. We modify the Maven extension from [51] to integrate JavaMOP, TraceMOP,
LazyMOP, and LazyMOP𝑒 into projects. Answering RQ2 requires profiling RV runs, so we use a
Maven extension to integrate the async-profiler [8] into evaluated projects. We use a bash script
to monitor peak program memory usage. We perform all experiments in Docker or Singularity
containers; the corresponding Docker and Singularity files and usage instructions are in our artifacts.
We run experiments on two machines, depending on projects’ memory requirements, but we run
all experiments for each project on the same machine: (i) an Intel® Xeon® w9-3475X (36 cores, 72
threads) CPU, 128 GB RAM, Ubuntu 24.04, Java 8, and Maven 3.8.8; (ii) Intel Core i7-13700k (16
cores, 24 threads) CPU, 64 GB RAM, Ubuntu 22.04, Java 8, and Maven 3.8.8.

4.1 RQ1: LazyMOP vs. JavaMOP, TraceMOP on One Program Version

We compare LazyMOP’s time and memory overheads vs. TraceMOP and JavaMOP on 179 projects,
one version each. The goal is to evaluate LazyMOP’s performance against SoTA explicit-trace
RV (i.e., TraceMOP) and implicit-trace RV (i.e., JavaMOP).

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:19

Fig. 8. Profiler data on where JavaMOP, LazyMOP, and TraceMOP spend their time (in seconds): in the

project (Project), instrumentation (Instr.), monitoring (Monitoring), accessing indexing tree (Indexing), fetching

locations (Location), accessing trie (Trie), and managing locks (Synchronization).

Runtime Overheads. The x-axis in Fig 7 shows the ratios of time for TraceMOP over Java-
MOP (top) and LazyMOP over JavaMOP (bottom); 1 represents JavaMOP time. We highlight two
main results. First, TraceMOP crashes with out-of-memory errors in 18, or 10.1% of projects. Of
these 18 projects, LazyMOP is faster than JavaMOP in four and is only 12.6% slower on average
(max: 25.9%) than JavaMOP in the other 14. Second, excluding projects where TraceMOP crashes,
LazyMOP is faster than TraceMOP in all 161 projects by up to 4.9x or 6.5 hours (average: 1.9x or
4.1 minutes).

Surprisingly, LazyMOP is faster than JavaMOP in 33, i.e., 18.4% of, projects, by an average of 1.4x
(max: 3.2x). We find that these 33 projects have many (637,769,089 out of 637,927,704, or 99.98%)
repeatedly monitored identical traces (so, lazy monitoring pays off), and are single threaded (so,
on-demand synchronization pays off). Also, LazyMOP is only less than 10% slower than JavaMOP
in another 102, i.e., 57.0% of projects. In all 179 projects, LazyMOP is only 1.3x slower than JavaMOP
(as expected: LazyMOP tracks traces but JavaMOP does not) on average (max: 8.5x).

Since LazyMOP is (i) faster than explicit-trace TraceMOP in all projects; (ii) faster than implicit-
trace JavaMOP in 18.4% of projects; and (iii) only less than 10% slower than JavaMOP in another
57.0% of projects, we conclude that LazyMOP is faster than TraceMOP for RV of tests. So, we do
not evaluate TraceMOP in RQ3–RQ5.
Memory Overheads. LazyMOP’s peak memory is 1.6x less than TraceMOP’s on average (max:
4.8x), so LazyMOP’s event encoding pays off. But, LazyMOP’s peak memory is higher than Trace-
MOP’s on 28 projects where memory needed for maintaining a trie-like structure per spec outweighs
the benefits of event encoding. On the other hand, LazyMOP’s peak memory across all projects is
2.7x higher than JavaMOP’s on average (max: 19.7x): LazyMOP stores unique traces and tracks
many parameter instances (avg: 10,588,301, sum: 1,895,305,876). We conclude from these peak
memory comparisons that LazyMOP is also often more space efficient than TraceMOP.

4.2 RQ2: Contributions of LazyMOP Components to its Efficiency

Figure 8 shows profiler data from our ablation study on how much lazy monitoring, event encoding,
and on-demand synchronization contribute to LazyMOP’s efficiency. There, we see proportions of
time that LazyMOP, TraceMOP, and JavaMOP spend in their various components, aggregated
across 161 projects (caption explains colors).
We highlight three main findings. First, the “Monitoring” portions show that LazyMOP’s lazy

monitoring incurs much less time than eager monitoring in JavaMOP and TraceMOP. Second,
explicit-trace LazyMOP and TraceMOP store unique traces in trie-like data structures, but Lazy-
MOP’s time to do so (“Trie”) is much faster than TraceMOP’s, due to event encoding and LazyMOP’s
seamless integration of its indexing tree and trie-like structure. That integration also makes Lazy-
MOP spend less time than TraceMOP on accessing indexing trees (“Indexing”). Lastly, LazyMOP

405:20 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

spends less time managing locks (“Synchronization”) than JavaMOP and TraceMOP; a benefit of
on-demand synchronization.

The overall time differences among LazyMOP, TraceMOP, and JavaMOP should be interpreted
in terms of average per-event processing time. For example, in project jingpeicomp/id-generator,
where TraceMOP crashes, LazyMOP is around 30 seconds faster than JavaMOP because LazyMOP’s
average per-event time of 37 nanoseconds (obtained by dividing the sum of times in id-generator’s
profiler data—104.84 seconds—by its number of events, 2.8 billion) is lower than JavaMOP’s 48
nanoseconds. That difference accumulates across all 2.8 billion events in id-generator to over 30
seconds, but it is not only due to lazy vs. eager monitoring. LazyMOP and JavaMOP each spend
65 seconds to store events in indexing trees ("Indexing"). LazyMOP spends only nine seconds to
transition monitors ("Monitoring") at the end for only 352 unique traces, while JavaMOP spends 27
seconds because it eagerly repeatedly and identically monitors these 352 unique traces 97 million
times. Separately, JavaMOP spends 23 seconds to manage locks ("Sync"), compared to LazyMOP’s
five seconds. But, LazyMOP spends nine seconds in its trie-like structure ("Trie") and three seconds
to look up locations ("Location")—costs that JavaMOP does not incur. Results in projects where
LazyMOP is slower than JavaMOP can also be explained in terms of similar analysis of average
time per event.
To see the contributions of event encoding and on-demand synchronization, which can be

Table 4. Times (s) with andw/o LazyMOP optimizations.

𝑡 lazy NoIntEncode NoOnDemand NoBothTime

Mean 216.8 333.3 234.0 355.7
Med 71.9 79.0 76.0 81.3
Min 6.5 7.4 8.2 8.5
Max 11,267.8 22,722.3 11,362.1 24,894.0
Sum 38,807.8 59,666.0 41,889.8 63,678.5

turned on and off, we measure LazyMOP’s
overhead without these optimizations. (Lazy
monitoring cannot be turned on/off.) Table 4
shows LazyMOP times with all optimiza-
tions (𝑡 lazy), with only lazy monitoring and
on-demand synchronization (NoIntEncode),
with only lazy monitoring and event encoding

(NoOnDemand), and with only lazy monitoring (NoBothTime). The results in Table 4 show that
all three optimizations in LazyMOP contribute to its efficiency. For all summary statistics, the
time for full LazyMOP (𝑡 lazy) is less than the times for all other columns. Lazy monitoring alone
(NoBothTime) is slower than other configurations, but LazyMOP still takes less time (44,885.6s)
than TraceMOP (62,388.1s). Lastly, event encoding alone (NoIntEncode) contributes more to
LazyMOP’s efficiency than on-demand synchronization alone (NoOnDemand). Overall, we con-
clude that event encoding and on-demand synchronization are essential to LazyMOP’s efficiency,
but event encoding contributes more.

4.3 RQ3: LazyMOP and LazyMOP
𝑒
vs. JavaMOP as Software Evolves

Here and in RQ4 (§4.4), we use 2,401 versions in 104 of 179 projects where we find at least four
versions where Java file(s) changed, code compiles, and tests pass with and without JavaMOP and
LazyMOP. The other 47 projects have fewer than four versions where JavaMOP works, 21 have
versions with compilation or dependency errors, and seven have versions with failing tests.

The first six columns in Table 5 show how many times JavaMOP, LazyMOP, and LazyMOP𝑒
perform best in terms of end-to-end time. Our appendix has detailed comparisons. LazyMOP𝑒 is
faster than JavaMOP in 38 (36.5% of) projects. But, LazyMOP is only faster than JavaMOP in 17
cases, i.e. in 16.3% of these projects. Comparing LazyMOP with LazyMOP𝑒 in Table 5, LazyMOP𝑒
is faster than LazyMOP in 53 cases, i.e., in 51.0% of these projects, by an average of 1.5x (max: 3.9x).
So, LazyMOP𝑒 ’s optimizations often make it faster than LazyMOP and JavaMOP during evolution.

Fig 9 shows how much the end-to-end times of LazyMOP (left) and LazyMOP𝑒 (right) are faster
(blue bars) or slower (red bars) than JavaMOP in 104 projects. Our analysis of 66 projects where
LazyMOP𝑒 is slower than JavaMOP shows that in 55 (83.3%) of them, over 50% of RV time is spent

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:21

Table 5. Pairwise comparisons of techniques during evolution. Parentheses show how much (avg/max) faster

a technique is. psc+imm
1 combines psc1 with LazyMOP

𝑒
, and pscℓ+imm

3 combines pscℓ3 with LazyMOP
𝑒
.

JavaMOP LazyMOP JavaMOP LazyMOP𝑒 LazyMOP LazyMOP𝑒 psc1 psc+imm
1 pscℓ3 pscℓ+imm

3

87 (1.4/8.4x) 17 (1.3/2.9x) 66 (1.5/8.8x) 38 (1.6/3.5x) 51 (1.1/1.8x) 53 (1.5/3.9x) 61 (1.4/7.7x) 43 (1.5/3.6x) 74 (1.3/8.0x) 30 (1.5/4.6x)

Fig. 9. Number of times faster (blue) or slower (red): LazyMOP vs. JavaMOP (left); LazyMOP
𝑒
vs. Java-

MOP (right).

Fig. 10. Similar to Fig 9, but with instrumentation cost excluded.

Fig. 11. Number of times faster (blue bars) or slower (red bars): psc+imm
1 vs. psc1 (left); ps

cℓ+imm
3 vs. pscℓ3 (right).

Fig. 12. Similar to Fig 11, but with instrumentation cost excluded.

on instrumentation. Fig 10 shows the speedups when instrumentation time is excluded. There, we
see that LazyMOP𝑒 is faster than JavaMOP in 71 (68.3%) projects and slower in 33 projects.
Overall, we conclude that LazyMOP𝑒 is faster than LazyMOP as software evolves, but more

work is needed to make LazyMOP𝑒 faster by (i) combining instrumentation-driven techniques like
iMOP [52] with LazyMOP𝑒 ; and (ii) handling more IMMs. Some major IMM categories that future
work should target are IMMs that depend on input or output of other methods and IMMs with
repeatedly monitored identical traces with events from multiple methods.

4.4 RQ4: Combining LazyMOP
𝑒
with Existing Evolution-aware RV Techniques

Given the promise shown by LazyMOP𝑒 in RQ3, a natural question is whether it can be combined
with eMOP techniques to make them faster. To answer that question, we combine psc1 and pscℓ3
(which use JavaMOP to re-monitor a subset of specs after code changes) with LazyMOP𝑒 (which
generates and monitors fewer identical traces than JavaMOP). Then we compare our combinations
with the psc1 and pscℓ3 implementations in Yorihiro et al.’s eMOP tool [131].

405:22 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

The seventh and eighth columns in Table 5 compare our combination of LazyMOP𝑒 with psc1,
named psc+imm

1 , with psc1 alone, using end-to-end times, on the same projects and versions in RQ3.
psc+imm

1 is faster than psc1 in 43, i.e., 41.3% of projects by 1.5x on average (max: 3.6x). For the other
61 projects, psc+imm

1 is slower by 1.4x on average (max: 7.7x). Similarly, the ninth and tenth columns
in Table 5 compare our combination of LazyMOP𝑒 with pscℓ3 , named pscℓ+imm

3 , with pscℓ3 alone.
LazyMOP𝑒 -based pscℓ3 is faster than pscℓ+imm

3 in 30, i.e., 28.8% of projects by 1.5x on average (max:
4.6x). For the other 74 projects, pscℓ+imm

3 is slower by 1.3x on average (max: 8.0x).
Fig 11 again shows the speedup (blue bars) and slowdowns (red bars) of psc+imm

1 vs. psc1 (left) and
of pscℓ+imm

3 vs. pscℓ3 (right) in all 104 projects, using end-to-end times. In 52 of 61 projects (85.2%)
and 59 of 74 projects (79.7%), where psc1 or ps

cℓ
3 performs better, RV overhead is dominated by

instrumentation. Fig 12 shows a similar plot after excluding instrumentation time. There, psc+imm
1

is faster than psc1 in 73 (70.2%) projects, and pscℓ+imm
3 is faster than pscℓ3 in 70 (67.3%) projects.

Overall, we conclude that combining with LazyMOP𝑒 speeds up these existing evolution-aware RV
techniques in several projects.

4.5 RQ5: Violation Preservation, Trace Preservation, and Safety

Violation Preservation. We check if LazyMOP finds the same violations as JavaMOP and Trace-
MOP in single-version experiments (RQ1). To do so, we compare the sets of unique violations
reported by these techniques. (A violation can occur multiple times if a violating trace is in a loop
or in a method that is called multiple times.) JavaMOP’s implicit-trace RV makes it hard to tell if
two violations have the same trace, so we follow prior work [79]: two violations of a spec are the
same if the code location of the last event in their violating trace is the same. In all 179 projects,
JavaMOP and LazyMOP find 2,099 violations in single-version experiments. But, TraceMOP only
finds 1,736 violations; all 363 missed violations are in the 18 projects where TraceMOP crashed.

Also, we randomly sample 100 violations of specs that helped find bugs in prior work [77, 79, 92].
We find 21 violations (from four specs and 11 projects) that are bugs. Of these, 13 are violations
of the BAOS spec in §2.1. The other 79 violations that we inspect are false alarms. These rates are
on par with prior work [77, 79, 92], which find that false alarms are mostly due to imprecision in
specs. We are in the process of reporting these bugs to the developers of these projects.

Fig. 13. Venn diagram for no. of

unique traces found by LazyMOP

only, TraceMOP only, and both.

Unique Trace Preservation. We measure how many traces mon-
itored by TraceMOP are also monitored by LazyMOP. This evalu-
ation is important because trace preservation is a stronger quality
criterion for RV than violation preservation—the former guaran-
tees the latter, but not vice versa. In this measurement, we account
for non-determinism by taking the union per technique across
four runs on the same machine. Figure 13 shows a Venn diagram
comparing the sets of violations from each tool. 1,308,609 unique
traces found by both LazyMOP and TraceMOP are identical. LazyMOP also finds 151,788 unique
traces that TraceMOP does not, while TraceMOP finds 151,802 traces that LazyMOP does not.
On average across these projects, 89% of the union of all traces are found by both techniques.

Since all tests pass in our evaluation, we have no evidence that they are due to the widely studied
flaky tests, which sometimes pass and sometimes fail on the same code [2, 15, 54, 59, 75, 86, 95, 100,
112, 115, 118]. So, we hypothesize that sources of non-determinism that did not affect test outcomes
are responsible for these differences. To test our hypothesis, we compare a subset of 100 traces from
the other 11%—a task made possible by the fact that LazyMOP and TraceMOP collect traces. The
sources of test non-determinism that we find are: (i) relying on random number generation (e.g.,
Random.nextInt()), (ii) random shuffling of collections (e.g., Collections.shuffle()), (iii) relying

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:23

on the system environment (e.g., environment variables or system properties that change across
our runs of different techniques on the same machine), and (iv) a combination of (i) and (ii). Future
work should investigate how to make RV more reliable in the presence of non-deterministic tests.
Since we witnessed executions where each trace occurs, tests always pass in our experiments,
and we find test non-determinism caused differences among monitored traces, we conclude that
LazyMOP finds the same set of traces as TraceMOP, modulo test non-determinism.
Safety. Finally, we check if LazyMOP𝑒 finds the same violations as JavaMOP in multi-version
experiments (RQ3 and RQ4) and the safety of psc+imm

1 of pscℓ+imm
3 . (Evolution-aware RV assumes

developers are aware of old violations, so they can miss violations that were in the old version.)
LazyMOP𝑒 finds the same violations as JavaMOP. That is, LazyMOP𝑒 is safe in our experiments.
In all 2,401 versions in these projects, JavaMOP finds 1,152 new violations. But, psc1 and psc+imm

1
miss four violations due to a known bug in eMOP [22]. Also, the 10 violations missed by pscℓ3 and
pscℓ+imm

3 are expected, and are due to these techniques trading safety for performance. We conclude
that combining LazyMOP𝑒 with psc1 and pscℓ3 does not make them less safe in our experiments.

5 Discussion

5.1 Future Work, Threats to Validity, and Limitations

5.1.1 Future Work. Other IMM Categories. In the future, we plan to investigate how to exploit
multi-IMM identical traces in LazyMOP and LazyMOP𝑒 . Doing so will require fast and sound
inter-procedural analysis to determine when it is safe to skip the generation or monitoring of
such traces. We also plan to investigate whether repeated monitoring within traces can be reduced.
LazyMOP reduces repeated monitoring across identical traces (i.e., when an identical trace is
repeatedly checked against the same spec). Our manual inspection shows that reducing repeated
monitoring within traces could further speed up LazyMOP and LazyMOP𝑒 . We find that identical
sub-traces often repeat and all events in such sub-traces are from one method. So, it may be possible
to de-instrument methods related to such sub-traces after monitoring them the first time.
Improving LazyMOP𝑒 . We only exploit one pattern (i.e., for-each loops) when evidence exists in
the old version’s traces or from the compiler that there can be no violation in the new version.
We plan to find and exploit more of such patterns. We only empirically evaluate LazyMOP𝑒 ’s
correctness/safety in this paper. We plan to investigate the theoretical correctness of LazyMOP𝑒 ,
and how to make it safe if unchanged IMMs can generate new events in the new version because
of modifications to changed code. Lastly, we plan to find ways to make LazyMOP𝑒 faster in more
projects by reducing its instrumentation-related costs in instrumentation-dominated projects.
Improving LazyMOP’s time and space efficiency. LazyMOP shows promising results in terms of how
much faster it is and how much less peak memory it uses compared to the SoTA explicit-trace RV
technique, TraceMOP. But, there is still plenty of room to speed up LazyMOP and optimize its
memory consumption. Doing so as part of future work, e.g., by investigating other data structures,
can make LazyMOP (and therefore LazyMOP𝑒) to be more efficient.

5.1.2 Threats to Validity. Our results may not generalize beyond the 179 projects that we evaluate.
To mitigate this threat, before selecting evaluation subjects, we first show that LazyMOP works on
1,432 projects from [51], and that it is faster than or about the same as TraceMOP on single versions
of 98.6% of those projects. We might have inadvertently introduced errors in our implementation.
To mitigate that threat, we validate our tools by checking whether they produce the same violations
as JavaMOP, which has been widely used. Non-deterministic tests make RV tools in this paper
observe different traces in different runs on the same machine. To mitigate this threat, we run
experiments multiple times and take the union of violations and traces across runs. We also identify
some sources of non-deterministic executions that make traces differ across runs; future work can

405:24 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

build on these findings. The main threat to external validity consists of the selection of evaluation
projects. So, we use popular projects from prior work and define exclusion criteria (§4).

5.1.3 Limitations. This paper focuses on reducing RV overhead during testing. Other problems
that impede RV usage in practice are out of scope. Such problems include improving spec quality,
making spec languages more user friendly, automatically inferring better-quality specs, reducing
the time it takes to check if spec violations are true bugs (or due to imprecision in specs), etc. These
problems are being investigated elsewhere [45, 50, 77, 79, 92, 104, 124], and they are orthogonal to
the one addressed in this paper. Also, the work in this paper is limited to the monitoring-oriented
programming (MOP) RV style [25, 29, 91]. Other important RV styles exist [10–12, 14, 20, 34–
37, 44, 61, 63, 90, 101, 103, 127], and future work should investigate if the ideas in LazyMOP and
LazyMOP𝑒 can speed them up. Lastly, our work may be limited to the kinds of API-level specs that
we use. But, those specs are part of the largest publicly-available set.

6 Related Work

Repetitive Monitoring and Testing. Purandare et al. [98] observed that RV overhead when
monitoring one spec against the DaCapo benchmarks was often due to repeated monitoring within
loops. So, they proposed a static analysis to find when a loop stutters—intuitively, the iteration
after which no new trace will be observed. They also develop a framework to transform loops so
that monitoring only occurs before stuttering. Like them, we are also interested to optimize RV by
reducing repeated and wasteful monitoring. But, their work is not concerned with the notions of
lazy monitoring, event encoding, and on-demand synchronization that underlie LazyMOP. Also,
LazyMOP𝑒 is complementary, allowing us to more simply solve a more general problem at a higher
granularity level without needing heavy-weight static analysis per loop and spec pair (more on
that below). We are also the first to conduct an empirical study of IMMs and tackle the problem of
repeatedly monitoring identical traces during software evolution.
LazyMOP𝑒 is simpler than Purandare et al.’s approach: LazyMOP𝑒 requires only the traces

from a prior RV run. We solve a more general problem because (i) repetitive monitoring during
testing can happen if multiple tests cover a program path, even when no loops are involved; and
(ii) multiple specs can be involved in an IMM (their approach handles only one spec at once per
loop). LazyMOP𝑒 handles both cases, but Purandare et al.’s approach cannot handle the first, and it
must perform additional analysis in the second. Also, unlike Purandare et al.’s approach, LazyMOP𝑒
has no limitations when it comes to exceptional program paths. We report end-to-end times, but
their static analysis times are not included in their paper (but they report that it can take hours).
However, we think that future work should revisit Purandare et al.’s approach during testing, e.g.,
by leveraging information about code changes during software evolution to reduce its costs.
Instrumentation-based Optimization. To our knowledge, LazyMOP𝑒 is the first to apply de-
instrumentation to optimize RV of tests. But, other researchers looked at speeding up RV using
instrumentation-based optimization. For example, several works use static analysis to selectively
instrument only parts of a program that static analysis could not prove safe [19, 38, 122]. Other
researchers speed up RV by reducing instrumentation costs, e.g., Bodden et al. distribute instru-
mentation costs across users [18] and Navabpour et al. develop instrumentation for sampling
events [93]. These works are not concerned with RV during testing or with de-instrumentation.
Other dynamic analyses used de-instrumentation for optimization, e.g., a dynamic data-race de-
tection (LiteRace [89]) and a memory-leak detector (SWAT [60]) first create instrumented and
un-instrumented copies of functions. Then, at runtime, they adaptively sample calls to either copy.
LazyMOP𝑒 also creates a copy of IMMs, but does not instrument the related spec in the copy or

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:25

use (adaptive) sampling. In CBI [6], instead of de-instrumenting after the fact, like LazyMOP𝑒 does,
the instrumentation process itself samples what parts of the program to instrument.
Offline RV. Offline RV [13, 33, 71, 84] is an explicit-trace RV approach, but monitoring is inactive
as a program runs. A program trace (without any slicing) is collected as the program runs, and then
processed in a separate offline phase. In a sense, LazyMOP is a hybrid online-and-offline approach
that collects and slices unique traces at runtime and then monitors them just before the program
terminates. It is not clear if purely offline RV can fit in tight CI budgets.
RV during Software Testing. Early work combined RV with automated test generation [4, 5]
and allowed developers to write and monitor specs within unit-test frameworks [37, 103]. More
recent works (i) demonstrated that RV during testing helps find many bugs [77, 79]; (ii) developed
evolution-aware RV [80, 82, 131]; and (iii) used machine learning to reduce human time to inspect
violations [92]. LazyMOP𝑒 is motivated by this line of work on RV during regression testing in
general, and the recent study of RV overheads during testing in particular [51].
Regression Test Selection. Evolution-aware RV [80] was inspired by regression test selection
(RTS) [130], which aims to speed up regression testing by re-running only tests affected by code
changes. Many RTS techniques [21, 58, 106, 108, 121, 126, 128, 136] and studies [9, 17, 39, 40, 49, 55,
78, 107, 109, 116, 117, 119, 120] exist, and recent work started getting adopted in industry [46, 47, 88].
RTS techniques can be categorized based on whether they use static [72, 81, 114, 129], dynamic [46–
48], hybrid [83, 132, 134], or predictive [85, 88, 133] change-impact analysis to identify affected
tests. eMOP and our combinations of eMOP with LazyMOP𝑒 use static analyses. So, other kinds
of analysis can be investigated in the future. But, in our experience, using dynamic analysis in
evolution-aware RV requires running tests twice—once to find relationships of code with specs,
and once to re-monitor affected tests—an overhead of at least 2x vs. running tests without RV.
RTS differs from, but complements evolution-aware RV. RTS re-runs a subset of tests in a new

version, but evolution-aware RV re-monitors all tests against a subset of specs. Using JavaMOP to
monitor RTS’ output was shown to be slower than using psc1 and ps

cℓ
3 to monitor all tests against a

subset of specs [52, 82]. One reason is that RTS re-incurs the full instrumentation cost, but psc1 and
pscℓ3 save instrumentation costs on specs not re-monitored. Prior work also shows that combining
RTS with evolution-aware RV is often faster than evolution-aware RV alone [52].

7 Conclusions

LazyMOP monitors fewer duplicate traces and is therefore faster than TraceMOP, the state-of-the-
art online explicit-trace RV technique. To demonstrate the practical usefulness of fast explicit-trace
RV, we also introduce LazyMOP𝑒 , which reduces the generation of duplicate traces using traces
from a prior program version. We show that the combination of LazyMOP𝑒 with two state-of-the-
art evolution-aware RV techniques is faster than these techniques alone in many projects. These
results provide initial yet strong evidence that fast explicit-trace RV for software testing is practical
and useful. We discuss other new trace-based RV applications that LazyMOP can enable and future
work that can make LazyMOP and LazyMOP𝑒 even faster.

Acknowledgments

We thank Saikat Dutta, Pengyue Jiang, Shinhae Kim, Sasa Misailovic, Elaine Yao, and the anonymous
reviewers for their help, comments, and feedback. This work is partially supported by an Intel
Rising Star Faculty Award, a Google Cyber NYC Institutional Research Award, and the United States
National Science Foundation (NSF) under Grant Nos. CCF-2045596, CCF-2319473, CCF-2403035,
CCF-2525243, CCF-2319472, and CCF-2349961.

405:26 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

Data-Availability Statement

Our formative study data, LazyMOP, LazyMOP𝑒 , our scripts, and our experimental infrastructure
are at https://github.com/SoftEngResearch/lazymop.

References

[1] Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and Jana Wagemaker. 2024.
Centralized vs decentralized monitors for hyperproperties. arXiv preprint arXiv:2405.12882 (2024).

[2] Abdulrahman Alshammari, Paul Ammann, Michael Hilton, and Jonathan Bell. 2024. 230,439 Test Failures Later: An
Empirical Evaluation of Flaky Failure Classifiers. In ICST.

[3] ArtcatWebPage 2025. ARTCAT: Autonomic Response To Cyber-Attack. https://grammatech.github.io/prj/artcat.
[4] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mike Lowry, Corina Pasareanu,

Grigore Roşu, Koushik Sen, Willem Visser, et al. 2005. Combining test case generation and runtime verification. TCS
336, 2-3 (2005).

[5] Cyrille Artho, Doron Drusinksy, Allen Goldberg, Klaus Havelund, Mike Lowry, Corina Pasareanu, Grigore Roşu, and
Willem Visser. 2003. Experiments with test case generation and runtime analysis. In Abstract State Machines.

[6] Piramanayagam Arumuga Nainar, Ting Chen, Jake Rosin, and Ben Liblit. 2007. Statistical debugging using compound
Boolean predicates. In ISSTA.

[7] ASMWebPage 2025. ASM. http://asm.ow2.org/.
[8] AsyncProfilerWebPage 2025. Sampling CPU and HEAP profiler for Java. https://github.com/async-profiler/async-

profiler.
[9] Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test Selection. In ISSTA.
[10] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004. Rule-Based Runtime Verification. In

VMCAI.
[11] Howard Barringer, David Rydeheard, and Klaus Havelund. 2010. Rule Systems for Run-time Monitoring: From Eagle

to RuleR. Journal of Logic and Computation 20, 3 (2010).
[12] David Basin, Felix Klaedtke, and Eugen Zălinescu. 2017. Runtime verification of temporal properties over out-of-order

data streams. In CAV.
[13] David A Basin, Felix Klaedtke, and Eugen Zalinescu. 2017. The MonPoly Monitoring Tool. RV-CuBES 3 (2017).
[14] Omar Bataineh, David S Rosenblum, and Mark Reynolds. 2019. Efficient decentralized LTL monitoring framework

using tableau technique. TECS 18, 5s (2019).
[15] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. 2018. DeFlaker:

Automatically Detecting Flaky Tests. In ICSE.
[16] Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. 2024. Monitoring second-order hyperproperties.

arXiv preprint arXiv:2404.09652 (2024).
[17] John Bible, Gregg Rothermel, and David S. Rosenblum. 2001. A Comparative Study of Coarse- and Fine-grained Safe

Regression Test-selection Techniques. TOSEM 10, 2 (2001).
[18] Eric Bodden, Laurie Hendren, Patrick Lam, Ondřej Lhoták, and Nomair A. Naeem. 2007. Collaborative Runtime

Verification with Tracematches. In RV.
[19] Eric Bodden, Patrick Lam, and Laurie Hendren. 2008. Finding Programming Errors Earlier by Evaluating Runtime

Monitors Ahead-of-time. In FSE.
[20] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. 2013. Time-triggered runtime verification.

43, 1 (2013).
[21] Lionel Briand, Yvan Labiche, and Siyuan He. 2009. Automating Regression Test Selection Based on UML Designs. IST

51, 1 (2009).
[22] BugInEmop 2024. Known bug in eMOP. https://github.com/SoftEngResearch/emop/issues/97.
[23] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. 2017. A survey of runtime monitoring instru-

mentation techniques. arXiv preprint arXiv:1708.07229 (2017).
[24] Marek Chalupa and Thomas A Henzinger. 2023. Monitoring hyperproperties with prefix transducers. In RV.
[25] Feng Chen, Marcelo d’Amorim, and Grigore Roşu. 2004. A Formal Monitoring-Based Framework for Software

Development and Analysis. In ICFEM.
[26] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Roşu. 2009. Efficient formalism-independent monitor-

ing of parametric properties. In ASE.
[27] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Roşu. 2009. Efficient Formalism-Independent Monitoring

of Parametric Properties. Technical Report UIUCDCS-R-2009-11787. Computer Science Dept., UIUC.
[28] Feng Chen and Grigore Roşu. 2007. MOP: An efficient and generic runtime verification framework. In OOPSLA.

https://github.com/SoftEngResearch/lazymop
https://grammatech.github.io/prj/artcat
http://asm.ow2.org/
https://github.com/async-profiler/async-profiler
https://github.com/async-profiler/async-profiler
https://github.com/SoftEngResearch/emop/issues/97

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:27

[29] Feng Chen and Grigore Roşu. 2003. Towards Monitoring-Oriented Programming: A paradigm combining specification
and implementation. In RV.

[30] Feng Chen and Grigore Roşu. 2008. Parametric trace slicing and monitoring. Technical Report UIUCDCS-R-2008-2977.
Computer Science Dept., UIUC.

[31] Feng Chen and Grigore Roşu. 2009. Parametric trace slicing and monitoring. In TACAS.
[32] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010).
[33] Christian Colombo, Gordon J Pace, and Patrick Abela. 2009. Offline runtime verification with real-time properties: A

case study. Technical Report.
[34] Marcelo d’Amorim and Klaus Havelund. 2005. Event-based runtime verification of Java programs. In WODA.
[35] Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner, Henny B Sipma, Sandeep

Mehrotra, and Zohar Manna. 2005. LOLA: runtime monitoring of synchronous systems. In Temporal Representation
and Reasoning.

[36] Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz, and Daniel Thoma. 2016. Runtime Monitoring with
Union-Find Structures. In TACAS.

[37] Normann Decker, Martin Leucker, and Daniel Thoma. 2013. jUnit RV–adding runtime verification to jUnit. In FM.
[38] Matthew B. Dwyer, Rahul Purandare, and Suzette Person. 2010. Runtime Verification in Context: Can Optimizing

Error Detection Improve Fault Diagnosis?. In RV.
[39] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review on Regression Test Selection

Techniques. IST 52, 1 (2010).
[40] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations of regression test selection techniques:

A systematic review. In ESEM.
[41] Ulfar Erlingsson and Fred B Schneider. 2000. IRM enforcement of Java stack inspection. In IEEE S&P.
[42] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2018. RVHyper: A runtime verification

tool for temporal hyperproperties. In TACAS.
[43] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019. Monitoring hyperproperties. FMSD

54, 3 (2019).
[44] Vojtěch Forejt, Marta Kwiatkowska, David Parker, Hongyang Qu, and Mateusz Ujma. 2012. Incremental Runtime

Verification of Probabilistic Systems. In RV.
[45] Mark Gabel and Zhendong Su. 2012. Testing Mined Specifications. In FSE.
[46] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight Test Selection. In ICSE Demo.
[47] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test selection with dynamic file

dependencies. In ISSTA.
[48] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko Marinov. 2014. Regression Test Selection

for Distributed Software Histories. In CAV.
[49] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An empirical evaluation and comparison

of manual and automated test selection. In ASE.
[50] Eli Goldweber, Weixin Yu, Seyed Armin Vakil Ghahani, and Manos Kapritsos. 2024. IronSpec: Increasing the Reliability

of Formal Specifications. In OSDI.
[51] Kevin Guan and Owolabi Legunsen. 2024. An In-depth Study of Runtime Verification Overheads during Software

Testing. In ISSTA.
[52] Kevin Guan and Owolabi Legunsen. 2025. Instrumentation-Driven Evolution-Aware Runtime Verification. In ICSE.
[53] Kevin Guan and Owolabi Legunsen. 2025. TraceMOP: An Explicit-Trace Runtime Verification Tool for Java. In FSE

Demo.
[54] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov. 2016. NonDex: A tool for detecting

and debugging wrong assumptions on Java API specifications. In FSE Demo.
[55] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluating regression test selection opportu-

nities in a very large open-source ecosystem. In ISSRE.
[56] Christopher Hahn. 2019. Algorithms for monitoring hyperproperties. In RV.
[57] Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019. Constraint-based monitoring of hyperproperties. In

TACAS.
[58] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel Pennings, Saurabh Sinha,

S. Alexander Spoon, and Ashish Gujarathi. 2001. Regression Test Selection for Java Software. In OOPSLA.
[59] Negar Hashemi, Amjed Tahir, Shawn Rasheed, August Shi, and Rachel Blagojevic. 2025. Detecting and evaluating

order-dependent flaky tests in JavaScript. In ICST.
[60] Matthias Hauswirth and Trishul M Chilimbi. 2004. Low-overhead memory leak detection using adaptive statistical

profiling. In ASPLOS.
[61] Klaus Havelund, Doron Peled, and Dogan Ulus. 2017. First order temporal logic monitoring with BDDs. In FMCAD.

405:28 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

[62] Klaus Havelund and Grigore Roşu. 2001. Monitoring Programs Using Rewriting. In ASE.
[63] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. 2014. Online monitoring of metric temporal logic. In RV.
[64] JaCoCoWebPage 2009. JaCoCo Java Code Coverage Library. http://www.eclemma.org/jacoco/.
[65] JavaForEach 2025. The For-Each Loop. https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.

html.
[66] JavaParserPage 2025. JavaParser - Home. https://javaparser.org.
[67] Omar Javed and Walter Binder. 2018. Large-Scale Evaluation of the Efficiency of Runtime-Verification Tools in the

Wild. In APSEC.
[68] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Roşu. 2011. Garbage Collection for Monitoring

Parametric Properties. In PLDI.
[69] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu. 2012. JavaMOP: Efficient Parametric

Runtime Monitoring Framework. In ICSE Demo.
[70] James A. Jones and Mary Jean Harrold. 2003. Test-Suite Reduction and Prioritization for Modified Condition/Decision

Coverage. TSE 29, 3 (2003).
[71] Hannes Kallwies, Martin Leucker, Malte Schmitz, Albert Schulz, Daniel Thoma, and AlexanderWeiss. 2022. TeSSLa–an

ecosystem for runtime verification. In RV.
[72] Henrik Karlsson. 2019. Limiting Transitive Closure for Static Regression Test Selection approaches. Master’s thesis. KTH

Royal Institute of Technology, Sweden.
[73] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G Griswold. 2001. An overview

of AspectJ. In ECOOP.
[74] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath Kannan, Insup Lee, and Oleg Sokolsky. 1999.

Formally specified monitoring of temporal properties. In ECRTS.
[75] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies: A framework for detecting and

partially classifying flaky tests. In ICST.
[76] Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu. 2012. Towards Categorizing and Formal-

izing the JDK API. Technical Report. Computer Science Dept., UIUC.
[77] Owolabi Legunsen, Nader Al Awar, Xinyue Xu, Wajih Ul Hassan, Grigore Roşu, and Darko Marinov. 2019. How

Effective are Existing Java API Specifications for Finding Bugs During Runtime Verification? ASE Journal 26, 4 (2019).
[78] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Marinov. 2016. An Extensive

Study of Static Regression Test Selection in Modern Software Evolution. In FSE.
[79] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov. 2016. How good are the specs?

A study of the bug-finding effectiveness of existing Java API specifications. In ASE.
[80] Owolabi Legunsen, Darko Marinov, and Grigore Roşu. 2015. Evolution-aware monitoring-oriented programming. In

ICSE NIER.
[81] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic Regression Test Selection. In ASE.
[82] Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic, Grigore Roşu, and Darko Marinov. 2019. Techniques for

Evolution-Aware Runtime Verification. In ICST.
[83] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023. More precise regression test selection

via reasoning about semantics-modifying changes. In ISSTA.
[84] Matt Luckcuck. 2020. Offline Runtime Verification of Safety Requirements using CSP. arXiv preprint arXiv:2007.03522

(2020).
[85] Erik Lundsten. 2019. EALRTS: A predictive regression test selection tool. Master’s thesis. KTH Royal Institute of

Technology, Sweden.
[86] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empirical analysis of flaky tests. In FSE.
[87] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, Traian Florin Şerbănuţă, and

Grigore Roşu. 2014. RV-Monitor: Efficient Parametric Runtime Verification with Simultaneous Properties. In RV.
[88] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Predictive test selection. In ICSE SEIP.
[89] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace: Effective sampling for lightweight

data-race detection. In PLDI.
[90] Michael Martin, Benjamin Livshits, and Monica S Lam. 2005. Finding application errors and security flaws using PQL:

a program query language. In OOPSLA.
[91] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. 2012. An overview of the MOP

runtime verification framework. IJSTTT 14, 3 (2012).
[92] Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. 2020. Prioritizing Runtime Verification

Violations. In ICST.
[93] Samaneh Navabpour, Chun Wah Wallace Wu, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2011. Efficient

Techniques for Near-Optimal Instrumentation in Time-Triggered Runtime Verification. In RV.

http://www.eclemma.org/jacoco/
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://javaparser.org

Faster Explicit-Trace Monitoring-Oriented Programming for Runtime Verification of Software Tests 405:29

[94] OfficialJavaAgents 2014. java.lang.instrument. http://docs.oracle.com/javase/8/docs/api/java/lang/instrument/
package-summary.html.

[95] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2021. A survey of flaky tests. TOSEM 31, 1
(2021).

[96] Srinivas Pinisetty, Gerardo Schneider, and David Sands. 2018. Runtime verification of hyperproperties for deterministic
programs. In FMSD.

[97] PITWebPage 2011. PIT Mutation Testing. http://pitest.org/.
[98] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2010. Monitor Optimization via Stutter-equivalent Loop

Transformation. In OOPSLA.
[99] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2013. Optimizing Monitoring of Finite State Properties

Through Monitor Compaction. In ISSTA.
[100] Shanto Rahman, Aaron Massey, Wing Lam, August Shi, and Jonathan Bell. 2024. Automatically reproducing timing-

dependent flaky-test failures. In ICST.
[101] Giles Reger, Helena Cuenca Cruz, and David Rydeheard. 2015. MarQ: Monitoring at Runtime with QEA. In TACAS.
[102] Giles Reger and Klaus Havelund. 2016. What is a trace? A runtime verification perspective. In International Symposium

on Leveraging Applications of Formal Methods.
[103] Adam Renberg. 2014. Test-inspired runtime verification: Using a unit test-like specification syntax for runtime verification.

Master’s thesis. KTH, Sweden.
[104] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford. 2013. Automated API

Property Inference Techniques. TSE 39, 5 (2013).
[105] Grigore Roşu and Feng Chen. 2012. Semantics and algorithms for parametric monitoring. LICS 8 (2012).
[106] Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for regression test selection. In ICSM.
[107] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selection techniques. TSE 22, 8 (1996).
[108] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test selection technique. TOSEM 6, 2

(1997).
[109] Gregg Rothermel and Mary Jean Harrold. 1998. Empirical studies of a safe regression test selection technique. TOSEM

24, 6 (1998).
[110] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong. 2002. Empirical Studies of Test-Suite

Reduction. STVR 12, 4 (2002).
[111] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. 2014. Balancing trade-offs in test-suite

reduction. In FSE.
[112] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting Assumptions on Deterministic

Implementations of Non-deterministic Specifications. In ICST.
[113] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov. 2018. Evaluating Test-suite Reduction

in Real Software Evolution. In ISSTA.
[114] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen. 2019. Reflection-Aware

Static Regression Test Selection. In OOPSLA.
[115] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies: A framework for automatically

fixing order-dependent flaky tests. In FSE.
[116] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and combining test-suite reduction and

regression test selection. In FSE.
[117] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Improving Regression Test Selection in

Continuous Integration. In ISSRE.
[118] Denini Silva, Martin Gruber, Satyajit Gokhale, Ellen Arteca, Alexi Turcotte, Marcelo d’Amorim, Wing Lam, Stefan

Winter, and Jonathan Bell. 2024. The effects of computational resources on flaky tests. TSE 50, 12 (2024).
[119] Mats Skoglund and Per Runeson. 2005. A case study of the class firewall regression test selection technique on a

large scale distributed software system. In ESEM.
[120] Mats Skoglund and Per Runeson. 2007. Improving class firewall regression test selection by removing the class

firewall. JSEKE 17, 3 (2007).
[121] Quinten David Soetens, Serge Demeyer, and Andy Zaidman. 2013. Change-Based Test Selection in the Presence of

Developer Tests. In CSMR.
[122] Chukri Soueidi and Yliès Falcone. 2022. Residual runtime verification via reachability analysis. In VSTTE. 148–166.
[123] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing software

reliability. TSE 1 (1986).
[124] Leopoldo Teixeira, Breno Miranda, Henrique Rebêlo, and Marcelo d’Amorim. 2021. Demystifying the challenges of

formally specifying API properties for runtime verification. In ICST.

http://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
http://pitest.org/

405:30 Kevin Guan, Marcelo d’Amorim, and Owolabi Legunsen

[125] TraceMOPWeb 2024. TraceMOP: A Trace-Aware Runtime Verification Tool for Java. https://github.com/
SoftEngResearch/tracemop.

[126] David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection Technique for Database Driven
Applications. In ICSM.

[127] ChunWahWallaceWu, Deepak Kumar, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2013. ReducingMonitoring
Overhead by Integrating Event- and Time-Triggered Techniques. In RV.

[128] Guoqing Xu and Atanas Rountev. 2007. Regression test selection for AspectJ software. In ICSE.
[129] Ugur Yilmaz. 2019. A Method for Selecting Regression Test Cases Based on Software Changes and Software Faults.

Master’s thesis. Hacettepe University, Turkey.
[130] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection and Prioritization: A Survey. STVR 22,

2 (2012).
[131] Ayaka Yorihiro, Pengyue Jiang, Valeria Marques, Benjamin Carleton, and Owolabi Legunsen. 2023. eMOP: A Maven

Plugin for Evolution-Aware Runtime Verification. In RV.
[132] Guofeng Zhang, Luyao Liu, Zhenbang Chen, and Ji Wang. 2024. Hybrid Regression Test Selection by Integrating File

and Method Dependences. In ASE.
[133] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022. Comparing and combining analysis-

based and learning-based regression test selection. In AST.
[134] Lingming Zhang. 2018. Hybrid Regression Test Selection. In ICSE.
[135] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An Empirical Study of JUnit Test-Suite

Reduction. In ISSRE.
[136] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A framework for checking regression test

selection tools. In ICSE.

Received 2025-03-26; accepted 2025-08-12

https://github.com/SoftEngResearch/tracemop
https://github.com/SoftEngResearch/tracemop

	Abstract
	1 Introduction
	2 Background
	2.1 MOP by Examples
	2.2 A Quick Algorithmic Tour of MOP and its Incarnation in JavaMOP and TraceMOP

	3 Techniques
	3.1 LazyMOP
	3.2 LazyMOPe

	4 Evaluation
	4.1 RQ1: LazyMOP vs. JavaMOP, TraceMOP on One Program Version
	4.2 RQ2: Contributions of LazyMOP Components to its Efficiency
	4.3 RQ3: LazyMOP and LazyMOPe vs. JavaMOP as Software Evolves
	4.4 RQ4: Combining LazyMOPe with Existing Evolution-aware RV Techniques
	4.5 RQ5: Violation Preservation, Trace Preservation, and Safety

	5 Discussion
	5.1 Future Work, Threats to Validity, and Limitations

	6 Related Work
	7 Conclusions
	References

